В решении.
Объяснение:
Известно , что график функции y=k/x проходит через точку A(-4;-0,25). Проходит ли это график через точку:
а)B(-8;-0,125);
б)C(50;-0,02);
в)D(-40;-0,05)?
Чтобы определить принадлежность точки графику, нужно известные значения х и у (координаты точки) подставить в уравнение. Если левая часть равна правой, то принадлежит, и наоборот.
1) Сначала нужно найти k, чтобы определить уравнение функции.
у=k/x
A(-4;-0,25)
Нужно в уравнение подставить известные значения (координаты точки А):
-0,25 = k/-4
k= (-0,25)*(-4)
k=1;
Уравнение функции имеет вид:
у = 1/х.
2) Теперь можно определять принадлежность точек графику:
а)B(-8;-0,125);
у=1/х
-0,125 = 1/-8
-0,125 = -0,125, проходит.
б)C(50;-0,02);
у=1/х
-0,02 = 1/50
-0,02 ≠ 0,02, не проходит.
в)D(-40;-0,05).
у=1/х
-0,05 = 1/-40
-0,05 ≠ -0,025, не проходит.
1) sin x = √2/2
x = (-1)ⁿ × arcsin √2/2 + πn, n∈Z
x = (-1)ⁿ × π/4 + πn, n∈Z
2) sin x = -√2/2
x = (-1)ⁿ × arcsin (-√2/2) + πn, n∈Z
x = (-1)ⁿ × -arcsin √2/2 + πn, n∈Z
x = (-1)ⁿ × (-π/4) + πn, n∈Z
3) sin x = -√3/2
x = (-1)ⁿ × arcsin (-√3/2) + πn, n∈Z
x = (-1)ⁿ × -arcsin √3/2 + πn, n∈Z
x = (-1)ⁿ × (-π/3) + πn, n∈Z
4) sin x = √3/2
x = (-1)ⁿ × arcsin √3/2 + πn, n∈Z
x = (-1)ⁿ × arcsin √3/2 + πn, n∈Z
x = (-1)ⁿ × π/3 + πn, n∈Z
5) sin x = 4/5
x = (-1)ⁿ × arcsin 4/5 + πn, n∈Z
x = (-1)ⁿ × 0,927295 + πn, n∈Z
x = (-1)ⁿ × 53,1° + πn, n∈Z
вот так вотттт))))))))))))