М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
lenka040670
lenka040670
03.12.2022 08:13 •  Алгебра

Да решите вы уже кто-нибудь это неравенство логарифмическое, от

👇
Ответ:
ArkhamCity
ArkhamCity
03.12.2022

x∈(0;\frac{1}{3})⋃(9;+∞).

Объяснение:


Да решите вы уже кто-нибудь это неравенство логарифмическое, от
4,4(80 оценок)
Открыть все ответы
Ответ:
mainura2006
mainura2006
03.12.2022

Объяснение:

В каком виде представлены выражения, в таком виде и будем решать:

(4ас^2)^3 •(0,5а^3 •с)^2=(2^2)^3 •(1/2)^2 •а^(3+3•2) •с^(2•3+2)=2^(2•3-2) •а^9 •с^8=2^4 •а^9 •с^8=16а^9 •с^8

(2/(3х^2 •у^3))^3 •(-9х^4)^2=8/3^3 •(-(3^2))^2 •х^(-2•3+4•2) •у^(-3•3)=8•3^(-3+2•2) •х^(-6+8) •у^(-9)=(8•3)/(х^2 •у^9)=24/(х^2 •у^9)

-(-х^2 •у^4)^4 •(6х^4 •у)^2=-36х^(2•4+4•2) •у^(4•4+2)=-36х^(8+8) •у^18=-36х^16 •у^18

(-10а^3 •b^2)^5 •(-0,2ab^2)^5=(-10)^5 •(-2/10)^5 •a^(3•5+5) •b^(2•5+2•5)=32•10^(5-5) •a^20 •b^(10+10)=32a^20 •b^20

4,6(49 оценок)
Ответ:
Karumi1
Karumi1
03.12.2022

Для того чтобы разложить на множители выражение вида ax^{2n} + bx^{n} + c, где n \in \mathbb{N}, \ a, \ b, \ c — числа, достаточно решить квадратное уравнение at^{2} + bt + c = 0, где x^{n} = t, и применить формулу разложения: a(t - t_{1})(t - t_{2}), где t_{1} и t_{2}  — корни данного квадратного уравнения, после чего нужно сделать обратную замену.

Итак, имеем биквадратный трехчлен x^{4} - 5x^{2} - 36. Сделаем подходящую замену: x^{2} = t. Получили квадратный трехчлен t^{2} - 5t - 36.

Решим уравнение t^{2} - 5t - 36 = 0 при теоремы Виета:

\left\{\begin{array}{ccc}t_{1} + t_{2} = 5, \ \ \\t_{1} \cdot t_{2} = -36\\\end{array}\right

Получили корни: t_{1} = 9; \ t_{2}= -4.

Подставим полученные корни в формулу: (t + 4)(t - 9). Сделаем обратную замену: (x^{2} + 4)(x^{2} - 9). Применим формулу разности квадратов a^{2} - b^{2} = (a - b)(a + b) и получаем окончательное разложение данного биквадратного трехчлена: (x^{2} + 4)(x - 3)(x + 3).

Воспользуемся методом группирования (группировки):

x^{4} - 5x^{2} - 36 = x^{4} + 4x^{2} - 9x^{2} - 4 \cdot 9 = x^{2}(x^{2} + 4) - 9(x^{2} + 4) =\\= (x^{2} + 4)(x^{2} - 9) = (x^{2} + 4)(x - 3)(x + 3)

ответ: (x^{2} + 4)(x - 3)(x + 3).

4,8(39 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ