Доведення 1.
0=0
10−10=15−15
10−6−4=15−9−6
2(5−3−2)=3(5−3−2)
скорочуємо одинакові множники
2=3
2+2=3+2
2+2=5
Доведення 2.
1=1
4
4
=
5
5
4·
1
1
=5·
1
1
оскільки
1
1
=
1
1
, то 4=5
А звідси 2+2=5
Доведення 3.
−20=−20
16−36=25−45
16−36+20.25=25−45+20.25
(4−4.5)2=(5−4.5)2
4−4.5=5−4.5
4=5
2+2=5
Доведення 4.
a=b
ab=b2
ab−a2=b2−a2
a(b−a)=(b+a)(b−a)
a=b+a, оскільки b=a, то
a=a+a
a=2a
1=2
звідси очевидним чином випливає, що
1=2 ⇒ 1+3=2+3 ⇒ 4=5 ⇒ 2+2=5
Доведення 5 (для тих хто вчив вищу математику).
Візьмемо інтеграл частинами згідно формул інтегрування частинами:
∫
1
x
dx=[\tableu=
1
x
;du=−
1
x2
dx;dv=dx;v=x]=
1
x
x−∫−
1
x2
xdx=1+∫
1
x
dx
Нехай ∫
1
x
dx=θ, тоді
θ=1+θ
0=1 ⇒ 0+4=1+4 ⇒ 4=5 ⇒ 2+2=5
Нужно раскрыть скобки по формулам сокращенного умножения
Сначала раскроем (а+1)во второй степени,получится
а в квадрате +2а+1
Дальше рассмотрим оставшиеся,то есть -(2а+3)во второй степени
-(4а в квадрате +12а+9 )
Раскроем скобки и получится
-4а в квадрате -12а-9
В итоге получилось
а в квадрате +2а+1-4а в квадрате -12а-9
Находим подобные и получается
-3 а в квадрате -10 а -8=0
Теперь решаем дискриминантом
Д(дискриминант)=корню из четырех ,то есть двум
А1= -2 целые одна третья
А2= -1
Второе уравнение решается аналогично
25 с в квадрате +80с +64 -с в квадрате +20с-100=0
Что-бы было удобней вычитать Д сократим все на два,и получится
6с в квадрате+25с-9=0
Д=корень из 841 =29
С1=1/3
С2=11/3=3 целых 2/3