Пусть первая бригада, работая одна, выполняет работу за x часов; тогда второй бригаде на выполнение всей работы потребуется (x+10) часов.
Соотвественно, производительность труда первой бригады равна (1/x) (1/час), второй бригады — (1/(x+10)) (1/час).
За 12 часов обе бригады, работая совместно, выполнят всю работу (т. е. 1). Получаем уравнение:
12*(1/x + 1/(x+10)) = 1.
Умножаем левую и правую части на x(x+10):
12(x+10) + 12x = x(x+10);
x² + 10x − 24x − 120 = 0;
x² − 14x − 120 = 0.
Выбираем положительное значение x:
x = 7 + √(49+120) = 20.
Значит, первой бригаде для выполнения всей работы потребуется 20 часов, а второй бригаде — 20+10=30 часа.
Проверяем: 12*(1/20+1/30) = 12*(5/60) = 1 (Ok).
ОТВЕТ: первой бригаде для выполнения этой работы потребовалось бы 20 часов.
a² - 5a + 4 = 0
a² - 4a - a + 4 = 0
a(a - 4) - (a - 4) = 0
(a - 1)(a - 4) = 0
a = 1; a = 4
x + y = 1; x + y = 4
b² - b - 2 = 0
b² + b - 2b - 2 = 0
b(b + 1) - 2(b + 1) = 0
(b - 2)(b + 1) = 0
b = -1; b = 2.
x - y = -1; x - y = 2
Получаем систему четырёх совокупностей:
1)
x + y = 1
x - y = -1
2x = 0
x + y = 1
x = 0
y = 1
2)
x + y = 1
x - y = 2
2x = 3
x + y = 1
x = 1,5
y = -0,5
3)
x + y = 4
x - y = -1
2x = 3
x + y = 4
x = 1,5
y = 2,5
4)
x + y = 4
x - y = 2
2x = 6
x + y = 4
x = 3
y = 1
Все системы решены алгебраическим сложением
ответ: (0; 1), (1,5; -0,5), (1,5; 2,5), (3; 1).