М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
kiron123
kiron123
22.09.2022 19:57 •  Алгебра

Доказать, что 6^240-1 делится на 35. желательно используя не формулы, а сравнение по модулю.​

👇
Ответ:
ampolskaanastas
ampolskaanastas
22.09.2022

По модулю очень громоздко. Всё же напишу очень простое доказательство.

Известный факт а^n-1   делится нацело на (а-1). Тем не менее докажем его по индукции. Для n=1 фаакт верен. Пусть верен для n-1

Но а^n-1=а*(а^(n-1)-1)+(а-1)  по предположению индукции первое слагаемое на (а-1) делится, второе тоже.

Но  6^240-1=36^120-1 и значит делится на  (36-1)=35, что и требуется.

4,5(79 оценок)
Открыть все ответы
Ответ:
innarudenkoco
innarudenkoco
22.09.2022

Р пр-ка = 60 м

Sдор. = 64 м²

шир. дор. = ? м

Решение.

Если  а и b - длина и ширина, соответственно, м, то

Рпр-ка = 2а + 2b ---- периметр здания

х, м ---- ширина дорожки

   Площадь дорожки складывается из 8 участков, Двух равных по длине длине здания, двух равных по длине ширине здания и четырех квадратов по углам, со стороной равной стороне дорожки.

Sдор. = 4х² + 2ах + 2bх  = 4х² + х(2а + 2b) = 4х² + х*Рпр-ка

4х² + 60х = 64 ----- по условию | : 4

х² + 15х - 16 = 0

D = 15² + 4*16 = 225 + 64 = 289 = 17²

х₁ =(-15 + √17²)/2 = (-15+17)/2 = 1 (м) ----- ширина дорожки

х₂ = (-15 - 17)/2 = - 16 м -- отбрасываем, как посторонний корень, не имеющий физического смысла

ответ:    1 м

Решить! основание здания является прямоугольником с периметром 60м. вокруг него заасфальтирована дор
4,6(79 оценок)
Ответ:
Амаз123
Амаз123
22.09.2022
Есть правило нахождении предела отношения дробно-рациональной функции при  х---> к бескон.Если многочлен в числителе имеет степень, равную степени многочлена в знаменателе, то предел равен отношению коэффициентов перед СТАРШИМИ степенями.Доказывается это с деления числителя и знаменателя на старшую степень и учёта того, что константа, делённая на бесконечно большую велмчину равна 0 (беск.малой величине).
В 1 примере старшая степень числителя первая и коэффициент перед ней равен 1.В знаменателе старш.степень первая и старший коэффю=1.Поэтому предел равен 1:1=1. Если решать пример с деления на старш.степень, то получим:

lim_{x\to \infty }\frac{x+1}{x-2}=lim_{x\to \infty }\frac{\frac{x}{x}+\frac{1}{x}}{\frac{x}{x}-\frac{2}{x}}=lim\frac{1+\frac{1}{x}}{1-\frac{2}{x}}=[\frac{1+0}{1-0}]=\frac{1}{1}=1

Конечно, удобнее пользоваться готовым правилом.

2)\; \; lim_{x\to \infty}\frac{x-4}{x+3}=\frac{1}{1}=1\\\\3)\; \; lim_{x\to \infty}\frac{7x+9}{6x-1}=\frac{7}{6}

Если степень многочлена в числителе меньше степени многочлена в знаменателе, то предел будет равен 0.
Если степень многочлена в числ. больше степени мног. в знаменателе, то предел равен бесконечности.
Например:

lim_{x\to \infty }\frac{x+3}{5x^2+2x-5}=0,tak\; \; kak\\\\lim_{x\to \infty }\frac{\frac{x}{x^2}+\frac{3}{x^2}}{\frac{5x^2}{x^2}+\frac{2x}{x^2}-\frac{5}{x^2}}=lim\frac{\frac{1}{x}+\frac{3}{x^2}}{5+\frac{2}{x}-\frac{5}{x^2}}=[\frac{0+0}{5+0-0}]=\frac{0}{5}=0
4,7(1 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ