Решение: Пусть a,b,c,d – данные последовательно записанные числа. Тогда по условию a+d=22 (1) b+c=20 (2) Из свойств арифметической и геометрической прогрессии имеем: a+c=2*b (3) c^2=b*d (4) Из (2) получим b=20-c (5). Сложив (1) и (2), получим a+b+c+d=22+20=42, использовав (3) и (5), получим
3*b+d=42, d=42-3*b=42-3*(20-c)=42-60+3*c=3*c-18,
то есть d=3*c-18 (6). Использовав (4), (5), (6), получим c^2=(20-c)*(3c-18). Решаем: c^2=60*c-360-3*c^2+18*c=-3c^2+78c-360. 4*c^2-78*c+360=02*c^2-39*c+180=0. d=39^2-4*2*180=81c1=(39-9)\(2*2)=30\4=15\2=7.5 c2=(39+9)\(2*2)=12 Из (1), (6) получим: а=22-d=22-(3*c-18)=40-3*c (7). Используя (5), (6), (7), получим: a1=40-3*7.5=17.5 a2=40-3*12=4b1=20-7.5=12.5 b2=20-12=8d1=3*7.5-18=4.5 d2=3*12-18=18 Таким образом получили две последовательности 17.5;12.5;7.5;4.5 и 4;8;12;18.
Вектор, перпендикулярный плоскости 2x + 3y - 4z + 2 = 0 имеет координаты (2; 3; -4). Он обязательно будет лежать в плоскости, перпендикулярной данной, уравнение которой нам нужно составить. Отложим этот вектор, например, от точки A (-3; 2; 1), т. е. проведём вектор АС, который лежит в искомой плоскости. Получим точку С (-1; 5; -3), которая тоже лежит в искомой плоскости. Зная координаты трёх точек A (-3; 2; 1), В (4; -1; 2) и С (-1; 5; -3), лежащих в одной плоскости, найдём уравнение этой плоскости. Для этого составляем определитель: | x-(-3) 4-(-3) -1-(-3) | | y-2 -1-2 5-2 | = 0 | z-1 2-1 -3-1 |
ответ:7 и 4
Объяснение: