Решим данную систему уравнений подстановки.
Объяснение:
4х+у=16
4х+2у-1=1
Гораздо удобнее будет выразить игрек.
Итак,
у=16-4х.
2у=2-4х.
Подставляем 16-4x из первого уравнения вместо у из второго.
Получаем второе уравнение, которое необходимо будет решить:
32-8х=2-4х
-4х=-30
х=7,5
Для того чтобы найти у, подставляем получившееся значение х в уравнение у=16-4х.
Получаем:
16-4*7,5=у
16-30=у
у=-14
Следовательно, ответ: (7,5;-14)
ОДЗ: система: -11tgx ≥ 0
x∋ (-π/2 + πn; π/2 + πn)
Произведение равно нулю, когда хотя бы один из множителей равен нулю, а второй при этом существует.
2cos²x - cosx = 0
⇒ (2cos²x - cosx)√(-11tgx) = 0 ⇔ система:
-11tgx = 0
Решим первое уравнение системы:
2cos²x - cosx = 0 ⇔ cosx (2cosx - 1) = 0 ⇔ система: cosx = 0 ⇔ cosx = 0 ⇔
2cosx - 1 = 0 cosx = 1/2
система: x = π/2 + πn, n∋Z
x = ±π/3 + 2πn, n∋Z.
решим второе уравнение системы:
-11tgx = 0 ⇔ tgx = 0 ⇒ x = πn, n ∈Z.
x = π/2 + πn, n∋Z - не удовлетворяет ОДЗ: x∋ (-π/2 + πn; π/2 + πn) .
⇒ ответ: ±π/3 + 2πn, n∋Z.; πn, n ∈Z.
х автомашин требовалось сначала
12/х тонн груза планировалось перевозить на каждой машине
(х+2) автомашин фактически использовали
(12/(х+2) тонн груза фактически перевозила каждая машина
По условию
12/х > (12/(х+2) на 1
получаем уравнение:
ОДЗ:
не удовлетворяет ОДЗ
Получаем:
4 автомашины требовалось сначала
12/4 = 3 тонны груза планировалось перевозить на каждой машине
4+2 = 6 автомашин фактически использовали
ответ: 1) 4 автомашины требовалось сначала.
2) 6 автомашин фактически использовали.
3) 3 тонны груза планировалось перевозить на каждой машине.
Объяснение:
4х+у=16
4х+2у-1=1
4х=16-у
4х+2у-1=1
4х=16-у
16-у+2у-1=1
4х=16-у
у=-14
у=-14
4х=16-(-14)
у=-14
х=15/2 (/-дробь)
ответ : (15/2;-14)
ВСЁ НАДО ВЗЯТЬ В СИСТЕМУ ПЕРЕД КАЖДЫМ ПОСТАВЬ СКОБОЧКУ КАК У ТЕБЯ В УРАВНЕНИИ