М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Hotaru385
Hotaru385
13.05.2020 23:46 •  Алгебра

Y= - (x+2)^2+3 . нужно построить график функции.

👇
Открыть все ответы
Ответ:
ashatsejtenov
ashatsejtenov
13.05.2020
1) по теореме косинусов имеем: a² = b² + c² - 2bc cos a = 25 - 24 cos 135° = 25 + 12√2 a = √(25 + 12√2) по теореме синусов, a / sin a = b / sin b sin b = sin a · b / a = √2 / 2 · 3 / √(25 + 12√2) = 3 / √(50 + 24√2) ∠b = arcsin(3 / √(50 + 24√2)) ∠c = 180° - 135° - ∠b = 45° - arcsin(3 / √(50 + 24√2)) 2) ∠a = 180° - ∠b - ∠c = 65° по теореме синусов b / sin b = a / sin a b = a sin b / sin a = 24.6 · √2 / 2 / (sin 65°) = 123√2 / (10 sin 65°) по теореме синусов c / sin c = a / sin a c = a sin c / sin a = 24.6 ·sin 70° / sin 65°
4,6(18 оценок)
Ответ:
dniil2003
dniil2003
13.05.2020

Минимальное n=51

Объяснение:

n^3+7^(2050)=n^3+  49^(1025)=n^3+(50-1)^1025

(50-1)^(1025)   -разложение бинома ньютона  ,в котором  все члены содержащие  50^2 кратны  100.    Последний член равен: (-1)^1025=-1

А  предпоследний равен  50*k .  Тк  степень  1025  нечетна,то  согласно разложению бинома предпоследний коэффициент n  нечетен. (все остальные члены содержат степень 50^2  cоответствено кратны  100)

Тогда  50*n ,кончается на  50,то есть  остаток от деления на  100  этого числа равен  50.

А  общий остаток от деления  числа

(50-1)^1025  на  100  равен:  50-1=49

Соответственно:

n^3+49  должно быть  кратно  100

Нужно отыскать минимальное  n^3  которое кончается на  51

n^3=100*k +51  k-натуральное  число

n^3=50*(2k+1)+1

Так же очевидно,  что  51^3=(50+1)^3  кончается  на   51  тк  3 нечетное число,это  следует из тех же рассуждений что и в  (50-1)^1025  ,только тут  1^3=1 ,следовательно кончается на  51 (дает остаток  51  при  делении  на 100).   Очевидно, что  n=51  самый вероятный  кандидат на  минимальное n.

Осталось доказать  , что натуральное   число  n<51 (возведенное в куб не  может оканчиваться на  51)

Предположим что такое число существует, тогда

очевидно  что : n=(10*r+1)    r<5 ,тк  число  должно кончатся на цифру  1.

Тк  только  цифра 1^3  кончается на 1.

(10*r+1)^3=50*(2k+1) +1

(10*r+1)^3 -1^3=50*(2k+1)   (применим формулу разности кубов)                          n^3-1^3=(n-1)*(n^2+n+1)

(10*r)*( (10*r+1)^2 +10*r+2)=50*(2k+1)

r*(100*r^2 +30r +3)=5*(2k+1)  ,то  есть левое число должно делится на 5.

Очевидно  ,что 100*r^2+30*r+3  не делится на 5  тк  все члены кроме трех  кратны пяти.  Откуда .поскольку число 5 простое,то  r  должно быть кратно  5,  но  r<5 ,то  есть  r не  может  быть кратно  5.

Мы  пришли к  противоречию,то есть такое невозможно.

Вывод:  n=51

4,6(68 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ