М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
aleksBRO
aleksBRO
25.03.2020 00:06 •  Алгебра

Решить систему уравнений , очень вас нужно с объяснениями​

👇
Ответ:
bedniyboyarin
bedniyboyarin
25.03.2020

x= 7.5

y= -14

Объяснение:

4x+y=16

4x+2y-1=1

y=16-4x

4x+2(16-4x)-1=1

4x+32-8x-1=1

-4x=-30

x=7.5

30+y=16

y=-14

4,8(80 оценок)
Открыть все ответы
Ответ:
Maks2405
Maks2405
25.03.2020

x1 = -re(acos(-3)) + 2*pi - i*im(acos(-3))

x2 = 2*pi - i*im(acos(4))

x3 = re(acos(-3)) + i*im(acos(-3))

x4 = re(acos(4)) + i*im(acos(4))

Объяснение:

x1 = -re(acos(-3)) + 2*pi - i*im(acos(-3))

x2 = 2*pi - i*im(acos(4))

x3 = re(acos(-3)) + i*im(acos(-3))

x4 = re(acos(4)) + i*im(acos(4))

x1 = 3.14159265358979 + 1.76274717403909*i

x2 = 6.28318530717959 - 2.06343706889556*i

x3 = 3.14159265358979 - 1.76274717403909*i

x4 = 2.06343706889556*i

сумма

-re(acos(-3)) + 2*pi - i*im(acos(-3)) + 2*pi - i*im(acos(4)) + i*im(acos(-3)) + re(acos(-3)) + i*im(acos(4)) + re(acos(4))

=

4*pi + re(acos(4))

произведение

(((-re(acos(-3)) + 2*pi - i*im(acos(-3)))*(2*pi - i*im(acos(4*(i*im(acos(-3)) + re(acos(-3*(i*im(acos(4)) + re(acos(4)))

=

-(2*pi - i*im(acos(4)))*(i*im(acos(-3)) + re(acos(-3)))*(i*im(acos(4)) + re(acos(4)))*(-2*pi + i*im(acos(-3)) + re(acos(-3)))

4,7(43 оценок)
Ответ:
bodnarhuk83
bodnarhuk83
25.03.2020
1-ый случай, когда a>0, b>0, тогда точка A лежит в 1-ой координатной четверти. Следовательно, точка B лежит в 3-ей координатной четверти и не принадлежит графику функции y=x^2, так как это парабола, и обе ее ветви лежат в 1-ой и 2-ой к.четвертях.
2-ой случай, когда a>0, b<0, тогда точка A лежит в 4-ой координатной четверти. Этого не может быть, так как ветви параболы по условию находятся в 1 и 2-ой к.ч.
3-ий случай, когда a<0, b>0, тогда точка A лежит в 2-ой координатной четверти. Следовательно, точка B лежит в 4-ой координатной четверти и не  принадлежит графику функции y=x^2.
4-ый случай, когда a<0, b<0, тогда точка A лежит в 3-ей к.ч. Этого не может быть, так как ветви параболы по условию находятся в 1 и 2-ой к.ч.

Если тебя не просят рассматривать случаи с различными знаками a и b, то доказательство идет другое. 
Координаты точки A имеют положительные знаки, отсюда следует, что она находится в первой координатной четверти.
Координаты точки B имеют отрицательные знаки, отсюда следует, что она лежит в 3-ей координатной четверти, а значит, она не может принадлежать графику функции. Это будет отчетливо видно, если ты посмотришь на график этой функции. 
Известно, что точка а (a; b) принадлежит функции y=x^2 принадлежит ли графику этой функции точка b (
Известно, что точка а (a; b) принадлежит функции y=x^2 принадлежит ли графику этой функции точка b (
4,4(59 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ