Объяснение:
Задача 1.
a1 = an - (n-1)*d = 59 - 3*n + 3 = 62 -3*n
Sn = (a1 + an)*(n/2) = 603
(62 - 3*n + 59)*n = 2*603 = 1206
(121 - 3*n)*n = 1206
- 3*n² + 121*n - 1206 = 0 a*x² + b*x + c = 0
Вычисляем дискриминант - D.
D = b² - 4*a*c = 121² - 4*(-3)*(-1206) = 169 - дискриминант. √D = 13.
Вычисляем корни уравнения.
n = (-b+√D)/(2*a) = (-121+13)/(2*-3) = -108/-6 = 18 - первый корень
x₂ = (-b-√D)/(2*a) = (-121-13)/(2*-3) = -134/-6 = 22,33 - второй корень -нет
n = 18 - число членов - ответ.
а1 = an - (n-1)*d = 59 - 17*3 = 59 - 51 = 8 - а1 -первый член- ответ
Проверено - правильно.
Задача 2.
a1 = an - (n-1)*d = -8 + 5*n -5 = -13 +5*n
Sn = (-13 + 5*n - 8)*n = 30*2 = 60
5*n² - 11*n - 60 = 0 - НЕ РЕШЕНО.
ЗАДАЧА 3.
а1 = an - (n-1)*d = 49 - (n-1)*2 = 51 - 2*n
Sn = (a1 + an)*(n/2) = 702
(51 - 2*n + 49)*n = 702*2
- 2*n² + 100*n - 1404 = 0 - не решено.
Задача 4.
а1 = an - (n-1)*d = -18 + 7*n -7 = 7*n - 25
Sn = (a1 + an)*(n/2) =
(7*n - 25 -18)*n = -20*2 = -40
7*n² - 43*n + 40 = 0
D = b² - 4*a*c = -43² - 4*(7)*(40) = 729 - дискриминант. √D = 27.
Вычисляем корни уравнения.
n₁ = (-b+√D)/(2*a) = (43+27)/(2*7) = 70/14 = 5 - первый корень
x₂ = (-b-√D)/(2*a) = (43-27)/(2*7) = 16/14 = 1,14 - второй корень - нет
n = 5 - число членов - ответ
а1 = -18 - 4*(-7) = -18 + 28 = 10 - первый член
Проверено - правильно.
Объяснение:
ОДЗ : cos2x ; sin2x
cosx ± 1/4 ; sinx ; cosx 0
x ± arccos0,25 + 2πk ; x πk/2 , k ∈ z
2*2cos^2 x - 2 = 1/2cos2x * ( ... )
2cos2x = 1/2cos2x * ( ... )
можно поделить на cos2x, так как cos2x также есть в знаменателе, то есть корни мы не теряем
2 = 1/2 * ( ... )
для удобства делаем замену: пусть 2x = t
2 = 1/2 * (/cost + 1/sint)
2 = /2cost + 1/2sint
(sint + cost) / 2costsint = 2
-2 (-/2 sint - 1/2 cost) / 2costsint = 2
-2 (-sin (π/3) sint - cos(π/3) cost) / 2costsint = 2
выносим минус за скобки и сокращаем 2
а также, используя формула приведения косинуса, только в обратную сторону, делаем все красиво
cos (π/3 - t) / costsint = 2
cos (π/3 - t) = 2costsint
cos (π/3 - t) - sin2t = 0
sin (π/2 - (π/3 - t) - sin2t = 0
sin (π/6 + t) - sin2t = 0
используем sin(t) - sin(s) = 2cos((t + s)/2) * sin ((t - s)/2)
и делим на 2
cos ((π + 18t)/12) * sin((π - 6t)/12) = 0
cos ((π + 18t)/12) = 0
sin ((π - 6t)/12) = 0
t = 5π/18 + 2πk/3
t = π/6 + 2πk
вспоминаем, что t = 2x
x = 5π/36 + πk/3
x = π/12 + πk
k ∈ Z