1. корень четной степени существует. если подкоренное выражение неотрицательно. т.е. 11+х≥0, х≥-11, на нуль делить нельзя, поэтому х²-3х-10≠0; по Виету корнями уравнения х²-3х-10=0 служат х=5;х=-2, тогда ОДЗ х≠5, х≠-2, окончательно, D(у)=[-11; -2)∪(-2;5)∪(5;+∞)
1) Боря берет конфеты по арифметической прогрессии: 1, 3, 5, ... a1(1) = 1; d1 = 2 Миша - тоже по арифметической прогрессии a2(1) = 2; d2 = 2 Всего Боря взял S1(n) = (2a1 + d(n-1))*n/2 = (2 + 2(n-1))*n/2 = (1 + n - 1)*n = n^2 = 60 7 < n < 8 Значит, n = 7, предпоследний раз Боря взял a1(7) = 1 + 2*6 = 13. И у Бори получилось S1(7) = 7^2 = 49 конфет. Но мы знаем, что всего он взял 60 конфет. Значит, в последний раз 11. Миша последний раз взял 14. Это тоже 7-ой раз. Всего Миша взял S2(7) = (2*2 + 2*6)*7/2 = 2*8*7/2 = 56 Всего конфет было 60 + 56 = 116
2) 231 = 3*7*11 На каждом этаже квартир больше 2, но меньше 7, то есть 3. Допустим, в доме 7 этажей. Тогда в одном подъезде 3*7 = 21 квартира. Квартира номер 42 - последняя во 2 подъезде. Квартир с номерами больше 42 во 2 подъезде нет. Значит, в доме 11 этажей. Тогда в одном подъезде 3*11 = 33 квартиры. Квартира номер 42 - последняя на 3 этаже.
1. корень четной степени существует. если подкоренное выражение неотрицательно. т.е. 11+х≥0, х≥-11, на нуль делить нельзя, поэтому х²-3х-10≠0; по Виету корнями уравнения х²-3х-10=0 служат х=5;х=-2, тогда ОДЗ х≠5, х≠-2, окончательно, D(у)=[-11; -2)∪(-2;5)∪(5;+∞)
2. 4-8х≥0; х≤0.5; х²-4.5х-9>0; решим уравнение х²-4.5х-9=0;
х=(4.5±√(20.25+36)/2=(4.5±√(56.25)/2=(4.5±7.5)/2; х=6; х=-1.5, вернемся к последнему неравенству.
-1.56
+ - +
х∈(-∞;-1.5)∪(6;+∞)
Областью определения будет пересечение двух решений неравенств.
х∈(-∞;-1.5)