ответ
4,0/5
133
sergeevaolga5
y=x²-4x+3
y=ax²+bx+c
a=1, b=-4, c=3
1) Координаты вершины параболы:
х(в)= -b/2a = -(-4)/(2*1)=4/2=2
у(в) = 2²-4*2+3=4-8+3=-1
V(2; -1) - вершина параболы
2) Ось симметрии параболы проходит через вершину параболы параллельно оси Оу, значит, ось симметрии можно задать уравнением х=2
3) Точки пересечения графика функции с осями координат:
с осью Оу: х=0, y(0)=0²-4*0+3=3
Значит, (0;3) - точка пересечения параболы с осью Оу
с осью Ох: у=0, x²-4x+3=0
D=(-4)²-4*3*1=16-12=4=2²
x₁=(4+2)/2=6/2=3
x₂=(4-2)/2=2/2=1
(3;0) и (1;0) - точки пересечения с осью Ох
4) Строим график функции:
Уже найдены вершина параболы и точки пересечения с осями координат. Точка (4;3) - расположена симметрично точке (0;3) относительно оси симметрии параболы
5) По рисунку видно, что график функции находится в I, II и IV четвертях.
Объяснение:
Раскладывать выражения на множители будем, используя группировки:
1). x – 3y + x2 – 9y2 = (x – 3y) + (x2 – 9y2).
По формуле а2 – b2 = (a – b)(а + b):
(x – 3y) + (x – 3y)(x + 3y).
Выносим выражение (x – 3y) за скобку:
(x – 3y)(1 + x + 3y).
2). 9m2 + 6mn + n2 – 25 = (9m2 + 2 ∙ 3mn + n2) – 25.
Упростим выражение в скобках по формуле квадрат суммы (а + b)2 = (а2 + 2ab + b2) и раскладываем как разность квадратов:
(3m + n)2 – 52 = (3m + n – 5)(3m + n + 5).
3). Выносим b3 за скобку и группируем:
ab5 – b5 – ab3 + b3 = b3(ab2 – b2 – a + 1) = b3((ab2 – b2) – (a – 1)) = b3[b2(a – 1) – (a – 1)].
Выносим общий множитель (a – 1) за скобку:
b3(a – 1)(b2 – 1).
4). 1– x2 + 10xy – 25y2 = 1– (x2 – 10xy + 25y2).
Выражение в скобке «сворачиваем» как квадрат разности, к полученному выражению применяем формулу разности квадратов а2 – b2 = (a – b)(а + b):
1– (x – 5y)2 = (1– x + 5y)(1+ x – 5y).
ответ: 1). x – 3y + x2 – 9y2 = (x – 3y)(1 + x + 3y); 2). 9m2 + 6mn + n2 – 25 = (3m + n – 5)(3m + n + 5); 3). ab5 – b5 – ab3 + b3 = b3(a – 1)(b2 – 1); 4). 1– x2 + 10xy – 25y2 = (1– x + 5y)(1+ x – 5y).
Объяснение:
Дано:∆ АВС - прямоугольный, угол С =90º
СК - бисскетриса.
ВК=30
АК=40
Решение задачи начнем с рисунка.
Биссектриса внутреннего угла треугольника делит сторону на отрезки, пропорциональные прилежащим сторонам.
Это относится ко всем треугольникам.
Из этого отношения следует отношение катетов:
ВС:АС=30:40=3:4
Пусть коэффициент отношения катетов будет х.
Тогда
ВС=3х
АС=4х
По т.Пифагора
АВ²=ВС²+АС²
70²=9х²+16х²=25х²
х²=196
х=14
АС=4*14=56 с
ВС=3*14=42 см
Опустим из точки К перпендикуляр КН на АС ( расстояние от точки до прямой -перпендикуляр)
КН║ВС, ∠ А общий
∆ АКН подобен ∆АВС
Из подобия
АВ:АК=ВС:КН
70:40=42:КН
КН=1680:70=24 см
Тем же из подобия КМВ и АВС найдем МК=24 (можно проверить).
Но треугольники ВМК и АНК не равны, как может показаться.
В них равные катеты лежат против разных углов.
АН=56-24=32 см
ВМ=42-24=18 см
Найдя КН, можно не находить отдельно расстояние КМ.
МКНС - квадрат, т.к. ∠С=90º по условию, ∠КАМ=∠КНС=90º по построению, а диагональ -биссектриса угла С
Подробнее - на - ответ:
Объяснение: