"существует х и существует у, такие что выполняется условие х+у=2"
Истина. Действительно, такие числа существуют, например (1; 1), (2.5; -0.5) и т.д.
∀x ∀y x+y=2
"для любого х и для любого у выполняется условие х+у=2"
Ложь. Очевидно, не любые два числа в сумме дают 2. Например, это условие не выполняется для чисел (0; 1), (2; -0.5) и т.д.
∃x ∀y x+y=2
"существует х, такой что для любого у выполняется условие х+у=2"
Ложь. Предположим, что существует такой х, равный х₀. Тогда, выразив из формулы у, получим: у=2-х₀. Но так как х₀ - некоторая найденная константа, то и выражение (2-х₀) представляет собой константу. Но левая часть соответствует у, который может быть любым. Константа не может равняться одновременно любому выражению. Значит, такого х существовать не может. Например, если х=3, то равенство выполняется только при условии у=2-3=-1, пара (3; -1), ни при каком другом у с тем же х условие не выполняется.
∀x ∃y x+y=2
"для любого х, существует у, такой что выполняется условие х+у=2"
Истина. Выбирая "любой" х мы всегда можем вычислить соответствующее значение у по формуле у=2-х. Например, если х=π, то у=2-π, пара (π; 2-π), если х=0, то у=2-0=2, пара (0; 2), и т.д.
Давай по твоим вопросам проедемся , а потом проведём полностью исследование и построим график. 1) чтобы понять: функция возрастает или убывает, надо возиться с производной. Производную приравнивают к нулю, решают уравнение ( корни этого уравнения - это критические точки. они могут точками экстремума . Если производная меняет свой знак при переходе через критическую точку с "+" на "-", значит, эта точка - точка максимума. Слева от этой точки функция возрастает ( график "лезет" вверх) , а справа убывает( график "едет" вниз) 2) асимптоты. разберёмся по ходу дела. А теперь начали. Исследование: у = (х² +1)/х 1)область определения: х ≠ 0 ( уже понятно, что график будет разорван, т.к. х = 0 брать нельзя, а другие значения х ( положительные и отрицательные) - можно. Сразу: х = 0 это асимптота 2)производную ищем по формуле (U/V)' =(U'V - UV')/V² у' = (2x*x - (x²+1)*1)/х² = (х² -1)/х² 3) Ищем критические точки: (х² -1)/х²= 0 , ⇒ х² -1 = 0 и х≠0,⇒ х = +-1 и х ≠0 Смотрим знак производной на числовой прямой -∞ -1 0 1 +∞ + - - + max min y₋₁ = -2; у₀ не существует; у₁ = 2 Итак, нашлись точки графика(-1;-2) и (1;2) 4) Ищем характеристические точки ( это точки пересечения графика данной функции с осями) а) с осью х ( если точка на оси х, то её координата по оси у = 0) у = (х² +1)/х (х² +1)/х= 0 ∅ вывод: график с осью х не пересекается) б) с осью у( если точка на оси у, то её координата по оси х = 0) у = (х² +1)/х ∅ вывод: график с осью у не пересекается. 5) можно строить график.
∃ - квантор существования, читается "существует"
∀ - квантор всеобщности, читается "для любого"
Рассмотрим высказывания:
∃x ∃y x+y=2
"существует х и существует у, такие что выполняется условие х+у=2"
Истина. Действительно, такие числа существуют, например (1; 1), (2.5; -0.5) и т.д.
∀x ∀y x+y=2
"для любого х и для любого у выполняется условие х+у=2"
Ложь. Очевидно, не любые два числа в сумме дают 2. Например, это условие не выполняется для чисел (0; 1), (2; -0.5) и т.д.
∃x ∀y x+y=2
"существует х, такой что для любого у выполняется условие х+у=2"
Ложь. Предположим, что существует такой х, равный х₀. Тогда, выразив из формулы у, получим: у=2-х₀. Но так как х₀ - некоторая найденная константа, то и выражение (2-х₀) представляет собой константу. Но левая часть соответствует у, который может быть любым. Константа не может равняться одновременно любому выражению. Значит, такого х существовать не может. Например, если х=3, то равенство выполняется только при условии у=2-3=-1, пара (3; -1), ни при каком другом у с тем же х условие не выполняется.
∀x ∃y x+y=2
"для любого х, существует у, такой что выполняется условие х+у=2"
Истина. Выбирая "любой" х мы всегда можем вычислить соответствующее значение у по формуле у=2-х. Например, если х=π, то у=2-π, пара (π; 2-π), если х=0, то у=2-0=2, пара (0; 2), и т.д.
ответ: истинные высказывания 1, 4; ложные высказывания 2, 3