15
Объяснение:
x-скорость ветра
Летя за ветром, его скорость стала 45+х, а против 45-х. В обеих случаях он пролетел 120км и потратил на все это в сумме 6 часов. Ко времени, за которое он пролетел двигаясь по ветру, добавляем время за которое он пролетел, летя против ветра и получаем 6. Решаем уравнение отталкиваясь от формулы S/v=t:
120/(45+x) + 120/(45-x) = 6
((120(45-х)+120(45+х))/((45+x)(45-x))=6
(5400-120x+5400+120x)/(2025+45x-45x-x^2)=6
10800/(2025-x^2)=6
10800=6(2025-x^2)
10800=12150-6x^2
6x^2=12150-10800
6x^2=1350
x^2=225
x1=15
x2=-15
Скорость не может быть отрицательной, поэтому х=15
По определению,
Т.к. в обоих случаях нужно обосновать, что L=0, определение преобразуется в утверждение
2)
А значит, если взять
(*),
. И правда: 
(*) Очевидно, что для любого допустимого значения
выражение
определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (*)
А это и означает, что предел данной последовательности равен 0
4)
А значит, если взять
(**),
. И правда: ![\dfrac{|2+(-1)^n|}{\varepsilon}\leq\dfrac{3}{\varepsilon}< \left[\dfrac{3}{\varepsilon}\right] +1=N\leq n \Rightarrow \dfrac{|2+(-1)^n|}{\varepsilon}< n \Rightarrow |x_n|](/tpl/images/3820/0626/49458.png)
(**) Очевидно, что для любого допустимого значения
выражение
определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (**)
А это и означает, что предел данной последовательности равен 0
___________________________
2) a=1. Тогда
4)
___________________________
Обозначения и некоторые св-ва: {x} - дробная часть числа x, [x] - целая часть числа x.