<!--c-->
Преобразим заданное уравнение:
x3+12x2−27x=a
С производной построим график функции y=x3+12x2−27x.
1. Введём обозначение f(x)=x3+12x2−27x.
Найдём область определения функции D(f)=(−∞;+∞).
2. Найдем стационарные и критические точки, точки экстремума и промежутки монотонности функции:
f′(x)=(x3+12x2−27x)′=3x2+24x−27.
Внутренние точки области определения функции, в которых производная функции равна нулю, назывём стационарными, а внутренние точки области определения функции, в которых функция непрерывна, но производная не существует, —критическими.
Производная существует всюду в области определения функции, значит, критических точек у функции нет. Стационарные точки найдем из соотношения f′(x)=0:
3x2+24x−27=0|÷3x2+8x−9=0D4=(b2)2−ac=822+9=25x1,2=−b2±D4−−√a=−82±25−−√1=−82±5x1=−82−5=−9x2=−82+5=1
Критические и стационарные точки делят реальную числовую прямую на интервалы с неизменным знаком производной. Чтобы определить знак производной, достаточно вычислить значение производной функции в какой-либо точке соответственного интервала.
Если производная функции в критической (стационарной) точке:
1) меняет знак с отрицательного на положительный, то это точка минимума;
2) меняет знак с положительного на отрицательный, то это точка максимума;
3) не меняет знак, то в этой точке нет экстремума.
Итак, определим точки экстремума:
При x<−9 имеем положительную производную (на этом промежутке функция возрастает); при −9<x<1 имеем отрицательную производную (на этом промежутке функция убывает). Значит, x=−9 — точка максимума функции. При −9<x<1 имеем отрицательную производную, при
Объяснение:
S = 64 см²
Объяснение:
r = 4 см
S - ?
=============
Должно выполняться условие, что суммы противоположных сторон четырехугольника равны - только тогда получиться вписать в него окружность.
Распишем это условие:
⇔
. где a - боковые стороны, b и c - основы.
Сделаем вывод, что трапеция являеться равнобедренной.
Формула для нахождения площади через среднюю линию и высоту трапеции:
⇔
, где S - площадь трапеции, m - средняя линия трапеции, h - ее высота.
, b и c - основы трапеции.
Зная радиус вписаной окружности, мы знаем высоту трапеции:
⇔
.
Соответственно, из прямоугольного треугольника ADH1 найдём боковую сторону трапеции с соотношений:
⇒
см - боковая сторона трапеции.
Если
, то зная а = 8, можем найти среднюю линию, а соответственно и площадь.
см.
Просто подставляем в формулу площади:
см².