М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
TopovayaKisa69
TopovayaKisa69
17.03.2021 05:49 •  Алгебра

Является ли решением уравнения x-2y=6 пара чисел: a (0;0) b (2;-2) B (8;1) г (0;3) д (15;4) е (6;0)​

👇
Ответ:
Катикини
Катикини
17.03.2021

а - нет

б - да

в - да

г - нет

д-нет

Е - да

Объяснение:


Является ли решением уравнения x-2y=6 пара чисел: a (0;0) b (2;-2) B (8;1) г (0;3) д (15;4) е (6;0)​
4,5(64 оценок)
Открыть все ответы
Ответ:
Пакмен007
Пакмен007
17.03.2021

Простыми преобразованиями эту задачу не решить, будем использовать арифметику остатков.

1-ое свойство, которое понадобится

a+c \equiv b + d \ (mod \ m)

То есть мы спокойно можем заменить каждое слагаемое сравнимым с ним по модулю m. То есть каждое слагаемое в нашей сумме будем рассматривать отдельно.

2-ое свойство, которое нам понадобится:

ac \equiv bd \ (mod \ m)

То есть довольно аналогичная вещь в произведении

На нашем примере все увидим

a = 5\cdot 2^{51}+21\cdot 32^{45}

Находим остатки по модулю 31

Рассматриваем первое слагаемое. Просто двойка не годится, нам нужно найти ближайшее к 31 число, превосходящее его (иногда там в отрицательные числа залезаем, например, 16 \equiv (-1) \ (mod \ 17), но сейчас это не нужно), нам повезло, это 32

Учитываем, что 32 \equiv 1 \ (mod \ 31), получаем

5\cdot 2^{51} = 5\cdot 2^1 \cdot 2^{50}=10 \cdot 2^{10\cdot 5} = 10 \cdot (2^{5})^{10}= 10\cdot 32^{10} \equiv 10 \cdot 1^{10} \ (mod \ 31)

То есть остаток от деления первого слагаемое на 31 получился равным 10. Прекрасно, аналогично со вторым

21\cdot 32^{45} \equiv 21 \cdot 1^{45}\ (mod \ 31) \equiv 21 \ (mod \ 31)

Остаток 21, чудесно. Выполняем последний шаг.

5\cdot 2^{51}+21\cdot 32^{45} \equiv 10+21 \ (mod \ 31) \equiv 31 \ (mod \ 31) \equiv 0 \ (mod \ 31)

То есть остаток от деления исходного числа на 31 равен 0, следовательно, исходное число делится на 31, что и требовалось доказать.

4,6(78 оценок)
Ответ:
Kesha4444
Kesha4444
17.03.2021

-3.

Объяснение:

√(6 -2√5) - √(9+4√5) =

Заметтм, что каждое подкоренное выражение можно представить в виде квадрата суммы или разности:

6 -2√5 = 5 -2√5 + 1 = (√5)^2 -2•√5•1 + 1^2 =

(√5 -1)^2.

9 + 4√5 = 5 + 4√5 + 4 = (√5)^2 + 2•√5•2 + 2^2 =

(√5 + 2)^2.

Именно поэтому решение запишется так:

√(6 -2√5) - √(9+4√5) = √(√5 -1)^2 - √(√5 + 2)^2 = l√5 - 1l - l√5 + 2l

Выражения, записанные под знаком модуля положительные, знак модуля опускаем, не меняя знаки слагаемых в скобках:

(√5 - 1) - (√5 + 2) =

Упрощаем получившееся выражение:

√5 - 1 - √5 - 2 = -1 -2 = -3.

ответ: -3.

Использованные тождества:

а^2 - 2аb + b^2 = (a-b)^2;

а^2 + 2аb + b^2 = (a+b)^2;

√(a)^2 = lal.

4,4(34 оценок)
Это интересно:

MOGZ ответил

Полный доступ к MOGZ
Живи умнее Безлимитный доступ к MOGZ Оформи подписку
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ