1. Б
2. Г
3. В
4. 1) у(2) = 8 * 2 - 3 =13
2) -19 = 8x - 3
-19 + 3 = 8x
8x = -16
x = -2
3) -13 = 8 * (-2) - 3
-13 = -16 - 3
-13 ≠ -19
Графік не проходить через точку А
5. х>0 при х=(1 1/3; + ∞)
6. 6х² - 3х ≠ 0
3х(2х - 1) ≠ 0
х ≠ 0; 2х ≠ 1
х ≠ 0; х ≠1/2
D(y) = ( -∞; 0)∪(0; 1/2)∪(1/2; +∞)
7. y = 47x - 9 та y = -13x + 231
47x - 9 = -13x + 231
47x + 13x = 231 + 9
60x = 240
x = 4
y(4) = -13 * 4 +231 = 179
(4; 179)
8. Нехай невідома функція у = kx + b.
Якщо вона паралельна графіку у = -5х + 8 , то k = -5.
Тоді невідома функція у = -5х + b.
Оскільки графіку даної функції належить точка В(-2; 8), то
8 = -5 * (-2) + b
8 = 10 + b
b = 8 - 10
b = -2
Відповідь: у = -5х - 2
найдем точки пересечения
x^2 - 4x + 3 = 8
x^2 - 4x -5=0
х= -1 х = 5
x^2 - 12x + 35 = 8
x^2 - 12x + 27=0
х = 3 х= 9
x^2 - 4x + 3 =x^2 - 12x + 35
8х = 32
х = 4
1) интеграл от 4 до 5 (8-(x^2 - 4x + 3 ))= 8х -x^3 /3 +2x^2 -3x = 25 -125/3 +50 - 32 +64/3 -32 =11 61/3 = 31 1/3
2) интеграл от3 до 4 (8-(x^2 - 12x + 35)) = 8х - x ^3 /3 +6x^2 -35x = -27*4 -64/3 +96 +27*3 +9 -54 = 24 -21 1/3 =2 2/3
31 1/3 +3 2/3 = 35
1/125,( если подносится степень с минусовым показником, то используем формулу х в степени -n=1/х в n степени) например 3 в (-2)= 1/3 в 2=1/9
625( а здесь просто перемножаем 25 на 25)