Учебно-методическое пособие для подготовки школьников к экзаменам, разработанное в Учебном центре "Резольвента". В пособии рассмотрены следующие во Решение рациональных уравнений; 2. Область определения рационального уравнения; 3. Решение иррациональных уравнений; 4. Область определения иррационального уравнения; 5. Рациональные уравнения, сводящиеся к квадратным при замены переменной; 6. Иррациональные уравнения, сводящиеся к квадратным при замены переменной; 7. Метод уединения радикала. Приведены примеры решения задач и задачи для самостоятельного решения. <a href="http://window.edu.ru/window/library?p_mode=1&p_qprovider=314&p_rubr=2.1.11" target="_blank">Пособия Учебного центра "Резольвента" для подготовки к ЕГЭ и ГИА по математике ->></a>
2sin2x + 3sinxcosx - 3cos2x = 1;
Представим 1 в виде суммы по основному тригонометрическому тождеству:
sin2x + 3cosxsinx - 3cos2x = sin2x + cos2x;
Приведем подобные:
sin2x + 3cosxsinx - 4cos2x = 0;
Разделим каждый член уравнения на cos2x:
tg2x + 3tgx - 4 = 0;
Произведем замену и решим квадратное уравнение:
t2 + 3t - 4 = 0;
D = 9 + 16 = 25;
t = (-3 +- 5)/2;
t1 = -4, t2 = 1;
Сделаем обратную замену:
tgx = 1; x = pi/4 + pin, n из Z;
tgx = -4; x = arctg(-4) pin, n из Z.
ответ: pi/4 + pin, n из Z; arctg(-4) pin, n из Z.
Объяснение:
Оцени!
(4;0)
Х переходит вперед на 3 точки, а у - на 2 точки