М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
pornuxa1
pornuxa1
05.05.2022 00:11 •  Алгебра

Найдите наименьшее значение функции y=x^3-3x+8 на отрезке [-3; 2]

👇
Ответ:
слышала
слышала
05.05.2022

y ' = 3x^2 -3

3x^2 -3=0

x^2 -1=0

x^2 =1

x = -1    x =1

y(-3) = -10

y(-1)=10

y(1)=6

y(2) =10

ответ :    -10

4,4(94 оценок)
Открыть все ответы
Ответ:
seimar2
seimar2
05.05.2022

1). Второе слагаемое умножается и делится на 2. В результате получается удвоенное произведение b/2a  и  х.

Так как квадрат х представлен в качестве первого слагаемого, то для полного квадрата суммы не хватает квадрата второго слагаемого, то есть (b/2a)².

Добавляем этот недостающий элемент и, чтобы значение выражения не изменилось, - вычитаем его же.

c/a оставляем без изменений:

         \displaystyle \tt x^{2}+\frac{b}{a}\cdot x+\frac{c}{a}=x^{2}+2\cdot x\cdot\frac{b}{2a}+\bigg(\frac{b}{2a}\bigg)^{2}-\bigg(\frac{b}{2a}\bigg)^{2}+\frac{c}{a}

2). Записываем получившийся полный квадрат суммы:

          \displaystyle \tt x^{2}+2\cdot x\cdot\frac{b}{2a}+\bigg(\frac{b}{2a}\bigg)^{2}=\bigg(x+\frac{b}{2a}\bigg)^{2}      

Оставшиеся два слагаемых группируем со сменой знака:

            \displaystyle \tt -\bigg(\frac{b}{2a}\bigg)^{2}+\frac{c}{a}=-\bigg(\bigg(\frac{b}{2a}\bigg)^{2}-\frac{c}{a}\bigg)

Приводим выражение в скобках к общему знаменателю 4а²:

             \displaystyle \tt -\bigg(\bigg(\frac{b}{2a}\bigg)^{2}-\frac{c}{a}\bigg)=-\bigg(\frac{b^{2}}{4a^{2}}-\frac{c}{a}\bigg)=-\frac{b^{2}-4ac}{4a^{2}}

3). Получаем в результате:

             \displaystyle \tt x^{2}+\frac{b}{a}\cdot x+\frac{c}{a}= \bigg(x+\frac{b}{2a}\bigg)^{2}-\frac{b^{2}-4ac}{4a^{2}};

4,5(25 оценок)
Ответ:
anuta136
anuta136
05.05.2022

Объяснение:1.Действия над степенями с целыми показателями выполняются по тем же правилам, что и действия над степенями с натуральными показателями. ( ВЕРНО)

2.Свойства степени с натуральным показателем справедливы и для степени с любым целым показателем, если основание степени не равно нулю. . ( ВЕРНО)

3.Все свойства степени с натуральным показателем справедливы и для степени с любым целым показателем. . ( ВЕРНО)

4.Действия над степенями с целыми показателями не выполняются по тем правилам, по которым выполняются действия над степенями с натуральными показателями.. ( НЕВЕРНО)

4,8(17 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ