староста класса, в котором 40 человек, подводил итоги по успеваемости группы за I полугодие. Получилась следующая картина: из 40 учащихся не имеют троек по русскому языку — 25 человек, по математике — 28 человек, по русскому языку и математике — 16 человек, по физике — 31 человек, по физике и математике — 22 человека, по физике и русскому языку 16 человек. Кроме того, 12 человек учатся без троек по всем трем предметам. Классный руководитель, просмотрев результаты, сказал: «В твоих расчетах есть ошибка».
Составьте диаграмму Эйлера–Венна и объясните, почему это так
Решение на картинке
Пример 1. Пусть А – множество двузначных натуральных чисел, В – множество четных двузначных чисел. Верно ли, что В есть подмножество множества А?
ответ: Каждое четное двузначное число содержится в множестве А. Следовательно, В А.
Пример 2. Пусть А = {1; 2; 3}, В = {x | x N , х < 4}. Верно ли, что А = В.
ответ. Множество В состоит из натуральных чисел, меньших 4. Каждый элемент из А входит в В. Следовательно, А В. Но натуральных чисел, меньших 4, кроме чисел 1,2,3, нет. Следовательно, каждый элемент из В входит в А. Значит, В А. По определению, А = В.
Пример. 3. Дано множество А четных натуральных чисел и множество В натуральных чисел, кратных 4. В каком отношении включения находятся множества А и В? ответ проиллюстрировать диаграммой Эйлера-Венна.
Решение. Каждое натуральное число, кратное 4, является четным числом. Значит, B А. Но не каждое четное число обязано делится на 4. Например, 6 не делится 4, т.е. А В. Имеем диаграмму:
РЕШИЛ
Объяснение: