Попробую решить) Итак, при х = -4,5 неравенство x^2+9x+a>0 - не верно. Значит, при х = -4,5 верно следующее неравенство: x^2+9x+a<0 ( поменяли знак неравенства на противоположный). Подставим "-4,5" вместо икса и получим: (-4,5)^2+9*(-4,5)+a<0 20,25-40,5+a<0 -20,25+a<0 a<20,25 - при этих "a" неравенство x^2+9x+a<0 - ВЕРНО,а неравенство x^2+9x+a>0 - НЕ ВЕРНО. И верным оно будет при a>20,25 ( поменяли знак неравенства на противоположный). Проверим: подставим в формулу неравенства любое значение "a", которое больше 20,25( например,21). Далее,чтобы решить неравенство, нам надо найти корни уравнения x^2+9x+21=0, но т.к. дискриминант <0, то решением неравенства x^2+9x+21>0 будут все иксы. ответ: a> 20,25.
x=4-y²
2) 2-2y=4-y²
x=2-2y
3)y²-2y-2=0
x=2-2y
решим 1 уравнение у²-2у-2=0 D=2²-4*(-2)=12 y=2-√12/2=2-2√3)/2=2*(1-√2)/2=1-√3
y2=2+√12)/2=1+√3
4)y=1-√3 или н=1+√3
х=2-2*(1-√3)=2√3 х=2+2*(1+√3)=2+2+2√3=4+2√3
в)х²+у²=29
у=10/х
2) х²+(10/х)²-29=0
у=10/х решим 1 уравнение Приведем к общему знаменателю получим
х^4-29x²+10=0 пусть х²=n n²-29n+10=0 D=29²-4*1*10=841-40=801=9*89
n1=(29+√801)/2
что-то не так в условии то что написано верно точно