Опо прогнозам синоптиков, в июне в течение 25 суток (2005 г.) небудет дождя. найдите вероятность того, что в первые три дня этогомесяца не будет дождя: а. 0,56; в. 0,44; с. 0,66; d. 1.
Пусть x ч — время мотоциклиста от А до С, тогда расстояние от А до С равно 90x км.
Автомобиль от А до С затратил на 1 час больше, т.е. (x+1) ч, тогда скорость автомобиля на участке от А до С равна 90x/(x+1) км/ч.
Расстояние от С до В равно (300-90x) км. Когда мотоциклист вернулся в А, автомобиль прибыл в В, то время, затраченное автомобилем от С до В равно x ч, следовательно скорость автомобиля на участке от С до В равна (300-90x)/x км/ч.
Так как скорость автомобиля на обоих участках постоянная, получим уравнение:
A(2 ; 4) 4=2^2 точка А принадлежит B(3 ;6) 6<3^2 точка B не принадлежит C(4 ; 8) 8<4^2 точка C не принадлежит D(-3 ; 9) 9= (-3)^2 точка D принадлежит R(0,5 ; 0,25) 0,25=0,5^2 точка R принадлежит S(1,2 ; 2,4) 2,4>1,2^2 точка S не принадлежит E(1,5 ; 3) 3>1,5^2 точка Е не принадлежит F(-2,5 ; 6,25) 6,25= (-2,5)^2 точка F принадлежит K(1\2 ; 1\4) 1/4=1/2^2 точка K принадлежит P(2\3 ; 4\9) 4/9=2/3^2 точка P принадлежит L(-5\7 ; 25\49) 25/49= (-5/7)^2 точка L принадлежит M(-11\12 ; -121\144) -121/144< (-11/22)^2 точка M не принадлежит
Пусть x ч — время мотоциклиста от А до С, тогда расстояние от А до С равно 90x км.
Автомобиль от А до С затратил на 1 час больше, т.е. (x+1) ч, тогда скорость автомобиля на участке от А до С равна 90x/(x+1) км/ч.
Расстояние от С до В равно (300-90x) км. Когда мотоциклист вернулся в А, автомобиль прибыл в В, то время, затраченное автомобилем от С до В равно x ч, следовательно скорость автомобиля на участке от С до В равна (300-90x)/x км/ч.
Так как скорость автомобиля на обоих участках постоянная, получим уравнение:
90x/(x+1) = (300-90x)/x
90x^2 = 300x + 300 — 90x^2 — 90x
6x^2 — 7x — 10 = 0
D = 289
x1 = 2 (ч) время мотоциклиста от А до С
x2 = -5/6 (не удовлетворяет условию задачи)
1) 90·2 = 180 (км) — расстояние от А до С.
ответ: 180