Пусть за х дней может закончить Катя, тогда еѐ производительность равна / х .
А за у дней может закончить Алиса, тогда еѐ производительность равна / у .
Т.к. они могут напечатать курсовую работу за 6 дней,
то /х + /у = 1/
Если сначала % = / части курсовой напечатает Катя,
а затем завершит работу Алиса, то Алисе остается
% = / части курсовой.
Вся курсовая работа будет выполнена за 12 дней т.е.
( /) х + (/ ) у = .
Решим систему:
/х + /у = / ,
(/) х + (/ ) у = .
+ = ,
+ = ;
у = − , ;
+ * ( − , ) = *( − , )
у = − , ;
, ² − + = ;
у = − , ;
² − + = ;
² − + = ;
= , у =
или = , у = . - не подходит, т.к. Катя печатает быстрее, чем Алиса.
Значит, Катя может напечатать курсовую работу за 10 дней.
ответ. за 10 дней
5sin²(x) + 3sin(x)cos(x) - 6cos²(x) = 1
• Упростим уравнение:
5sin²(x) + 3sin(x)cos(x) - 6cos²(x) = sin²(x) + cos²(x)
<=>
4sin²(x) + 3sin(x)cos(x) - 7cos²(x) = 0
• Получили однородное тригонометрическое уравнение II типа, значит поделим всё на cos²(x), причём:
cos(x) ≠ 0
x ≠ π/2 + πn, n ∈ ℤ
• Получаем:
4tg²(x) + 3tg(x) - 7 = 0
Пусть tg(x) = t, тогда tg²(x) = t²
4t² + 3t - 7 = 0
D = 9 - 4 • 4 • (-7) = 9 + 112 = 121 = 11²
t₁ = (-3 + 11)/8 = 1
t₂ = (-3 - 11)/8 = -14/8 = -7/4
• Перейдём к системе:
[ tg(x₁) = 1
[ tg(x₂) = -7/4
<=>
[ x₁ = π/4 + πn, n ∈ ℤ
[ x₂ = -arctg(7/4) + πn, n ∈ ℤ
ответ: x₁ = π/4 + πn, n ∈ ℤ ; x₂ = -arctg(7/4) + πn, n ∈ ℤ