Стороны прямоугольника равны 6 см и 10 см.
Объяснение:
Пусть одна сторона прямоугольника равна х см,
тогда другая сторона прямоугольника равна (х+4) см.
По условию задачи, площадь прямоугольника равна 60 см².
Составим и решим уравнение:
х(х+4)=60
х²+4х-60=0
D = 4²-4*1*(-60)= 16+240 = 256 =16²
x₁=(-4+16)/2 = 12/2 = 6
x₂=(-4-16)/2 = -20/2 =-10 <0 - данный корень не является решением задачи, т.к. сторона прямоугольника не может быть отрицательным числом.
Итак, х=6 см - одна сторона прямоугольника
х+4=6+4=10 (см ) - другая сторона прямоугольника.
Пусть вся дорога 1 (единица), тогда х время, за которое первая бригада может отремонтировать дорогу, а у время второй бригады. Совместная работа двух бригад 6 ч. Если первая бригада отремонтирует 3/5 дороги, то время затратит (3/5)÷(1/х)=3х/5 ; если вторая бригада отремонтирует оставшуюся часть: 1-3/5=2/5 дороги. то время затратит (2/5)÷(1/у)=2у/5 , и времени они затратят 12 часов. Составим два уравнения:
1/х+1/у=1/6
3х/5+2у/5=12
Выделим х во втором уравнении:
3х/5+2у/5=12
15х+10у=300
3х+2у=60
х=(60-2у)/3
Подставим значение х в первое уравнение:
3/(60-3у)+1/у=1/6
18у+360-12у=60у-2у²
2у²-54у+360=0
у²-27у+180=0
D=9
у₁=12 часов вторая бригада может отремонтировать дорогу самостоятельно.
х₁=(60-2*12)/3=36/3=12 часов первая бригада может отремонтировать дорогу самостоятельно.
у₂=15 часов вторая бригада может отремонтировать дорогу самостоятельно.
х₂=(60-2*15)/3=30/3=10 часов первая бригада может отремонтировать дорогу самостоятельно.
ответ: Или первая за 12 часов и вторая за 12 часов; Или первая за 10 часов и вторая за 15 часов.
ответ:263636373
Объяснение: