М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
alinochkaderyu
alinochkaderyu
17.01.2021 13:18 •  Алгебра

Өтінемін көмектесіңіз
өтінемін көмектесіңіз
өтінемін көмектесіңіз
өтінемін көмектесіңіз
өтінемін көмектесіңіз
өтінемін көмектесіңіз
(если не понимаешь по казахски то не надо писать "типа напиши по русскому это мне очень надо)

👇
Открыть все ответы
Ответ:
natalyiphonep0725u
natalyiphonep0725u
17.01.2021

Объяснение:

1)  2,7/(2,9-1,1)=2,7/(1,8)=27/18=3/2=1,5

2) Найдите корни уравнения 2x в степени 2 плюс 14x=0. Ты (подсказка: выносим что-то общее за скобку, далее произведение двух выражений равно нулю, значит кто-то из них ноль...)

2x²+14x=0

2x(x+7)=0

x₁=0 ; x₂=-7

3) Решите уравнение: (дробь, числитель — 3x минус 2, знаменатель — 4) минус (дробь, числитель — x, знаменатель — 3 )= 2. (подсказка: не забудьте, сначала приводим к общему знаменателю, затем отбрасываем знаменатель.)

(3x-2)/4 - x/3=2

((3x-2)*3-4x)/12=2

9x-6-4x=24

5x-6=24

5x=24+6

5x=30

x=30/5

x=6

4,5(5 оценок)
Ответ:

а). В этом числе ноль встречается 9 раз, а числа 2, 3, 9 - по 20 раз.

б). Да, 123...9899 делится на 9.

Сначала посчитаем, сколько всего в числе 1234..9899 было выписано цифр 0, 1, 2, 3, 9. Это тоже самое, что и посчитать, сколько раз встречаются эти же цифры в числах от 1 до 99.

Цифра 0:

10, 20, 30, 40, 50, 60, 70, 80, 90 - всего 9 раз.

Цифра 1:

1, 10 - 19 (11 раз), 21, 31, 41, 51, 61, 71, 81 ,91 - всего 20 раз.

Понятно, что 2, 3, 9 встречаются столько же раз, сколько и 1 (все они могут стоять 10 раз в разряде единиц, и 10 раз - в разряде десятков).

Теперь нужно узнать, делится ли число 1234..9899 на 9.

Признак делимости на 9: число делится на 9 тогда и только тогда, когда сумма его цифр тоже делится на 9.

Так что мы должны узнать, делится ли 1 + 2 + 3 + ... + 99 на 9.

Для этого найдем искомую сумму по формуле арифметической прогрессии:

S = \frac{(a_1+a_n)n}{2} = \frac{(1+99)*99}{2} = \frac{9900}{2} = 4950.

4950:9=550.

Так как получилось разделить нацело, то 1234...9899 делится на 9.

4,4(46 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ