Раскрываем скобки. Для этого, значение перед скобками умножаем на каждое значение в скобках, и складываем их в соответствии с их знаками. То есть получаем:
2 * 1 - 2 * sin ^ 2 x = 1 - sin x;
2 - 2 * sin ^ 2 x = 1 - sin x;
Перенесем все значения выражения на оду сторону. При переносе значений, их знаки меняются на противоположный знак. То есть получаем:
2 * sin ^ 2 x - sin x + 1 - 2 = 0;
2 * sin ^ 2 x - sin x - 1 = 0;
1) sin x = 1;
x = pi/2 + 2 * pi * n, где n принадлежит Z;
2) sin x = - 1/2;
x = (- 1) ^ n * 7 * pi/6 + pi * n, где n принадлежит Z.
Объяснение:
Пусть x рублей стоит пирожок, а y рублей - булка. Зная, что на 40 рублей можно купить три пирожка и две булки, составим первое уравнение системы: 3x+2y=40. Также, по условию задачи известно, что на 45 рублей можно приобрести два пирожка и три булки; составим второе уравнение системы: 2x+3y=45. Составим и решим систему уравнений:
6x+4y-6x69y=80-135
5y=55
y=11
ответ: 11 рублей стоит булка; 6 рублей стоит пирожок.
Пусть x - число девочек в классе, а y - мальчков. Зная, что всего в классе 24 ученика, составим первое уравнение: x+y=24. По условию задачи, чтобы девочкам выдать по три тетради,а мальчикам по две тетради,потребуется 59 тетрадей. Составим второе уравнение: 3x+2y=59. Составим систему уравнений:
3x+2y-2x-2y=59-48
x=11
ответ: в классе 11 девочек, 13 мальчиков.
Подробнее - на -
9 и 6
Объяснение:
Пусть х дет. изготавливал ежедн. 1 рабочий, тогда y дет. изгот. второй рабочий. Тогда 3·х дет. сделал за три дня 1-ый.
По условию задачи: 3·х-3=4·у, то есть 3х-4у=3. Также 7·х+12·у=135
Теперь делаем систему уравнений:
7х+12у=135
3х-4у=3 Домножаем кажд. на 3, получается:
7х+12у=135
9х-12у=9 Теперь складываем почленно левые и прав. части уравнений системы:
16х+0=144 и решаем
16х=144
х=144÷16=9
теперь находим у
3х-4у=3
4у=3х-3= 3·9-3=24
у=24÷4=6