y = x² - 3x + 2
Если график пересекает ось абсцисс , то ордината точки пересечения равна нулю, то есть y = 0. Найдём абсциссу точки пересечения :
0 = x² - 3x + 2
x² - 3x + 2 = 0
(x - 2)(x - 1) = 0
или x - 2 = 0 и тогда x = 2
или x - 1 = 0 и тогда x = 1
Нашли две точки пересечения графика с осью OX, координаты которых :
(2 ; 0) , (1 ; 0)
Если график пересекает ось ординат , то абсцисса точки пересечения равна нулю, то есть x = 0. Найдём ординату точки пересечения :
y = 0² - 3 * 0 + 2 = 2
Координаты точки пересечения с осью OY : (0 ; 2)
D(f)∈(-∞;∞)
Асимптот нет,непериодическая
f(-x)=-x³+12x=-(x³-12x)
f(x)=-f(-x) нечетная
x=0 y=0
y=0 x(x²-12)=0 x=0 x=2√3 x=-2√3
(0;0);(2√3;0);(-2√3;0)-точки пересечения с осями
f`(x)=3x²-12=3(x-2)(x+2)=0
x=2 x=-2
+ _ +
(-2)(2)
возр max убыв min возр
уmax=-8+24=16
ymin=8-24=-16
f``(x)=6x=0
x=0 y=0
(0;0)-точка перегиба
- +
(0)
выпукл вверх вогнута вниз