1-весь заказ 1/х - работа за час 1-й компании 1/(х+9) - работа за час второй компании 1/х+1/(х+9) = 1\20 - ПЕРЕНЕСЕМ 1\20 В ЛЕВУЮ ЧАСТЬ 1/х+1/(х+9) - 1\20 = 0 ПРИВЕДЕМ ВСЕ ОДНОЧЛЕНЫ К ОБЩЕМУ ЗНАМЕНАТЕЛЮ 1/х + 1/(х+9) - 1\20 / 20*х(х+9) = 0 домножим обе части на знаменатель,т.е. избавимся от него. Получим это уравнение 20х+180+20х-х²-9х = 0 -х²+31х+180= 0 D = 961+720 = 1681 (41) x1 = (-31+41):(-2) <0 - не подходит по смыслу. х2 = (-31-41):(-2) = 36 (часов надо 1 бригаде) 36+9 = 45 ответ за 45 часов выполнит работу 2 бригада.
1) Введем функцию: f(x)=(х∧2+2х+1)(х-3)(х+2)÷х∧2+2х-3, f(x)=0, (х∧2+2х+1)(х-3)(х+2)÷х∧2+2х-3=0 2) Найдем нули числителя и знаменателя: Числитель: -Все скобки приравниваем к нулю: х∧2+2х+1=0 D<0, f(x)>0 х-любое число x-3=0 x=3 x+2=0 x=-2 Расставляем полученные числа на числовую прямую, нам нужен промежуток с плюсом, т.к. в условии функция >0, получаем х принадлежит(-бесконечности; 2),(3; до +бесконечности), Знаменатель: х∧2+2х-3 не равно 0 D=16 x=-3 x=1 Так же на числовой прямой расставляем полученные корни, получаем х принадлежит (-бесконечности; -3),(1; + бесконечности) Сопоставляем полученные промежутки на общую числовую прямую, получаем конечный ответ х принадлежит (-бесконечности; -3),(3; + бесконечности)
вот должно быть правильно