Объяснение:
у=х²+4х-2
Это парабола ,ветви вверх. Координаты вершины
а)х₀=-в/2а, х₀=(-4)/2=-2 , у₀=(-2)²+4*(-2)-2=-6 , (-2; -6).
б) во всех четвертях.
с) х=-2
d)Точки пересечения с осью ох, т.е у=0
х²+4х-2=0
Д=в²-4ас, Д=4²-4*4*(-2)=16+32=48=16*3
х₁=(-в+√Д):2а , х₁=(-4+4√3):2 , х₁=2(-2+2√3):2 , х₁=-2+2√3, (-2+2√3;0)
х₂=(-в-√Д):2а , х₂=(-4-4√3):2 , х₂=2(-2-2√3):2 , х₂=-2-2√3 , (-2-2√3;0)
Точки пересечения с осью оу, т.е. х=0, у=-2 (0;-2)
Доп.точки у=х²+4х-2 :
х: -5 -4 -3 1
у: 3 -2 -5 3
2)у=-х²-2х+6 Это парабола ,ветви вниз.
а)f(2)=-(2)²-2*2+6=-4-4+6=-2,
f(-2)=-(-2)²-2*(-2)+6=-4+4+6=6,
б) точка (-3;к) принадлежит графику функции, значит ее координаты удовлетворяют уравнению у=-х²-2х+6.
к=-(-3)²-2*(-3)+6 , к=-9+6+6 , к=3
За 4 часа
Объяснение:
Пусть на большом укладчике можно выполнить работу за х ч.
Тогда на малом за x+8 часов. А на обоих за 3 часа.
Значит, за 1 час на большом укладчике можно сделать 1/x часть работы, на малом 1/(x+8) часть, а на обоих 1/3 часть работы. Уравнение:
1/x + 1/(x+8) = 1/3
Умножаем все на x, на (x+8) и на 3.
3(x+8) + 3x = x(x+8)
3x + 24 + 3x = x^2 + 8x
0 = x^2 + 8x - 6x - 24
x^2 + 2x - 24 = 0
(x + 6)(x - 4) = 0
x1 = -6 < 0 не подходит
x2 = 4 часа - за это время мы сделаем работу на большом укладчике.
x+8 = 4+8 = 12 часов - за это время мы сделаем на малом укладчике.
1/4 + 1/12 = 3/12 + 1/12 = 4/12 = 1/3 - все правильно.