М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Motornerplay
Motornerplay
07.11.2022 12:11 •  Алгебра

В каких точках график функции У(х) пересекает ось Оу.
а)у=2х+11;
б)у=х(в шестой степени) +2х⁴+5.​

👇
Открыть все ответы
Ответ:
1) Задание

Дана функция \displaystyle y=x^3-3x^2+1

найти промежутки возрастания и убывания

По признаку возрастания и убывания функции на интервале:
если производная функции y=f(x) положительна для любого x из интервала X, то функция возрастает на X;
 если производная функции y=f(x) отрицательна для любого x из интервала X, то функция убывает на X.

Найдем производную данной функции

\displaystyle y`(x)=(x^3-3x^2+1)`=3x^2-6x

найдем точки экстремума, точки в которых производная равна нулю

\displaystyle y`(x)=0\\ 3x^2-6x=0\\3x(x-2)=0\\x_1=0; x_2=2



отметим точки на числовой прямой и проверим знак производной на промежутках

___+____-______+__
         0             2

Значит на промежутках (-оо;0) ∪ (2;+оо) функция возрастает
на промежутке (0;2) функция убывает

точки х=0 точка минимума, х=2 точка максимума

Найти наибольшее и наименьшее значение функции на отрезке [-2; 1].

Заметим, что х=2 точка максимума не входит в данный промежуток,
а х=0 принадлежит данному промежутку

Проверим значение функции в точке х=0 и на концах отрезка

\displaystyle y(0)=0-0+1=1\\y(-2)=-8-12+1=-19\\y(1)=1-3+1=-1



Значит наибольшее значение функции на отрезке  [-2;1]
в точке х=0 и у(0)=1

значит наименьшее значение функции на отрезке [-2;1]
в точке х=-2 и у(-2)= -19

2. Напишите уравнение к касательной к графику функции
f(x)=x^3-3x^2+2x+4 в точке с абсциссой x0=1.

Уравнение касательной имеет вид

\displaystyle y_{kac}=y(x_0)+y`(x_0)(x-x_0)

найдем производную данной функции

\displaystyle y`(x)=(x^3-3x^2+2x+4)`=3x^2-6x+2

найдем значение функции и производной в точке х=1

\displaystyle y(1)=1-3+2+4=4\\y`(1)=3-6+2=-1

подставим значения в уравнение касательной

\displaystyle y_{kac}=4-1(x-1)=4-x+1=5-x
4,6(55 оценок)
Ответ:
AliceRosen
AliceRosen
07.11.2022

Общий вид уравнения касательной к графику функции у = f(x) в точке х = х0 имеет вид
у = f'(x0)(x - x0) + f(x0).
Найдем уравнение производной f'(x) для функции f(x) = x^3 - 10x^2 + 1
f'(x) = 3x^2 - 10*2x + 0 = 3x^2 - 20x.
Здесь ^ - знак возведения в степень, * - знак умножения.
Найдем значение производной f'(x) в точке х = х0 = 1
f'(x0) = f'(1) = 3*1^2 - 20*1 = -17.
Найдем значение функции f(x) в точке х = х0 = 1
f(x0) = f(1) = 1^3 - 10*1^2 + 1 = -8.
Подставим в общее уравнеие касательной числовые значения f'(1), x0, f(1)
y = -17(x - 1) - 8, y = -17x + 9.
ответ: у = -17х + 9.

4,5(83 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ