Muu Шlli 1011.Решите графически систему уравнений: (x+2y = (0), (2x – Бу = 10, 15х + y = -18; 4х – у = 2; will I Hill in iti - | | 200 line - A will milli millifilm unili і lili і 1 - - ш і —
КЛАССИФИКАЦИЯ: Линейное неоднородное дифференциальное уравнение второго порядка со специальной право частью Найти нужно: yо.н. = уо.о. + уч.н.
Найдем уо.о. (общее однородное) Применим метод Эйлера Пусть , тогда подставив в однородное уравнение, получаем характеристическое уравнение Корни которого Тогда общее решение однородного уравнения будет
Найдем теперь уч.н.(частное неоднородное) отсюда где - многочлен степени х
Сравнивая с корнями характеристического уравнения и, принимая во внимания что n=1 , частное решение будем искать в виде: уч.н. =
Чтобы определить коэффициенты А и В, воспользуемся методом неопределённых коэффициентов:
Подставим в исходное уравнение и приравниваем коэффициенты при одинаковых х
Тогда частное решение неоднородного будет иметь вид
КЛАССИФИКАЦИЯ: Линейное неоднородное дифференциальное уравнение второго порядка со специальной право частью
Найти нужно: yо.н. = уо.о. + уч.н.
Найдем уо.о. (общее однородное)
Применим метод Эйлера
Пусть
Корни которого
Тогда общее решение однородного уравнения будет
Найдем теперь уч.н.(частное неоднородное)
где
Сравнивая
уч.н. =
Чтобы определить коэффициенты А и В, воспользуемся методом неопределённых коэффициентов:
Подставим в исходное уравнение и приравниваем коэффициенты при одинаковых х
Тогда частное решение неоднородного будет иметь вид
уч.н.
Запишем общее решение исходного уравнения