1) чтобы узнать проходит ли график функции через обозначенные точки, необходимо для начала указанные координаты подставить в уравнение. как? например 1я точка А (3;0). 3 - это х, 0 - это у. проверяем: 0 = -2*3 + 3 0 неравен -3; то есть график функции не проходит через эту точку. если бы обе части уравнения были равны друг другу, то тогда бы проходил. 2) чтобы найти точки пересечения графиков с осями координат, нужно решить уравнения функций, где сначала х = 0, затем у. то есть 1) 2х - 6у = 10 2*0 - 6у = 10 -6у = 10 у = - 1 целая 2/3 точка пересечения с осью ох (0; -1 целая 2/3) затем ищем точку пересечения с осью оу: 2х -6*0 = 10 2х = 10 х = 5 (5;0)
////////////////////// _____-5____________-4__________(-3-√7)/2________(-3+√7)/2___0______ ////////////////////////////////////////////////////////// //////////////////////// решение первой системы -5 ≤ Х ≤ -4
////////// /////////////// _____-3_____(-3-√7)/2________(-3+√7)/2___0________ 2________ ///////////////////////////////// решений нет
Таким образом решение системы -5 ≤ Х ≤ -4. Тогда сумма целых решений: (-4) + (-5) = -9 ответ: -9.
0 = -2*3 + 3
0 неравен -3; то есть график функции не проходит через эту точку. если бы обе части уравнения были равны друг другу, то тогда бы проходил.
2) чтобы найти точки пересечения графиков с осями координат, нужно решить уравнения функций, где сначала х = 0, затем у.
то есть 1) 2х - 6у = 10
2*0 - 6у = 10
-6у = 10
у = - 1 целая 2/3
точка пересечения с осью ох (0; -1 целая 2/3)
затем ищем точку пересечения с осью оу:
2х -6*0 = 10
2х = 10
х = 5
(5;0)