М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
гость66666
гость66666
11.11.2021 03:28 •  Алгебра

1)Чему равно наибольшее значение выражения - 2х² + 12х?
2)при каком значении х это наибольшее значение достигается?

👇
Открыть все ответы
Ответ:
ира10141
ира10141
11.11.2021
1) чтобы узнать проходит ли график функции через обозначенные точки, необходимо для начала указанные координаты подставить в уравнение. как? например 1я точка А (3;0). 3 - это х, 0 - это у. проверяем:
0 = -2*3 + 3
0 неравен -3; то есть график функции не проходит через эту точку. если бы обе части уравнения были равны друг другу, то тогда бы проходил.
2) чтобы найти точки пересечения графиков с осями координат, нужно решить уравнения функций, где сначала х = 0, затем у.
то есть 1) 2х - 6у = 10
2*0 - 6у = 10
-6у = 10
у = - 1 целая 2/3
точка пересечения с осью ох (0; -1 целая 2/3)
затем ищем точку пересечения с осью оу:
2х -6*0 = 10
2х = 10
х = 5
(5;0)
4,4(93 оценок)
Ответ:
kristinacelidze167
kristinacelidze167
11.11.2021
|2x^{2} +6x+1| \leq x^{2} -3x-19 \\
 \\ 
 \left \{ {{2 x^{2} +6x+1 \leq x^{2} -3x-19} \atop {2 x^{2} +6x+1 \geq 0}} \right. \\ 
 \left \{ {{x^{2} +9x+20 \leq 0} \atop {2 x^{2} +6x+1 \geq 0}} \right. \\ 
x^{2} +9x+20 =0, x_{1}=-4,x_{2}=-5 \\ 
2 x^{2} +6x+1=0, \\ 
D=28, \sqrt{D} = \sqrt{28}=2 \sqrt{7} \\ 
 x_{1}= \frac{-3+ \sqrt{7} }{2} ,x_{2}= \frac{-3- \sqrt{7} }{2} \\
           //////////////////////
_____-5____________-4__________(-3-√7)/2________(-3+√7)/2___0______
//////////////////////////////////////////////////////////                            ////////////////////////
  решение первой системы       -5 ≤ Х ≤ -4

\\ \left \{ {{-2 x^{2} -6x-1 \leq x^{2} -3x-19} \atop {2 x^{2} +6x+1< 0}} \right. \\ \left \{ {{-3x^{2} -3x+18 \leq 0} \atop {2 x^{2} +6x+1 < 0}} \right. \\ &#10;\left \{ {{x^{2} +x-6 \geq 0} \atop {2 x^{2} +6x+1 < 0}} \right. \\ &#10;x^{2} + x - 6 =0, x_{1}=-3,x_{2}=2 \\
//////////                                                                                  ///////////////
_____-3_____(-3-√7)/2________(-3+√7)/2___0________ 2________
                        /////////////////////////////////
решений нет

Таким образом  решение системы  -5 ≤ Х ≤ -4.
Тогда сумма целых решений: (-4) + (-5) = -9
ответ:   -9.
4,8(49 оценок)
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ