экстремумы (sin a - cos a) найдем, приравняв к нулю производную:
cos a + sin a = 0
sin a = -cos a - решение в точках 3pi/4 + n*pi, n принадлежит Z
в точках 3pi/4 + 2n*pi, n принадлежит Z, sin a = (корень из 2)/2, cos a = -(корень из 2)/2, значит (корень из 2)/2 * sin a - (корень из 2)/2 * cos a = 2/4 - (-2/4) = 1 - максимум исходной функции.
в точках -pi/4 + 2n*pi, n принадлежит Z, sin a = -(корень из 2)/2, cos a = (корень из 2)/2, значит (корень из 2)/2 * sin a - (корень из 2)/2 * cos a = - 2/4 - 2/4 = -1 - минимум исходной функции.
Из вышесказанного можно сделать вывод, что исходное выражение будет лежать в данном интервале при любом значении альфа.
а)
ОДЗ:у-любое число
б)
ОДЗ:у-любое число,кроме у≠9
у-9=0
у=9
в)
ОДЗ:у-любое число, кроме у≠3,у≠ -3
у²-9=0
(у-3)(у+3)=0
у-3=0 или у+3=0
у=3 у= -3
г)
ОДЗ:у-любое число
у²+3=0
у²≠ -3
ответ:уравнение не существует, квадрат числа не может быть отрицательным
д)
ОДЗ:у-любое число,кроме у≠6,у≠ -6
у-6=0 или у+6=0
у=6 у= -6
е)
ОДЗ-х-любое число,кроме х≠0,х≠ -7
х=0 или х+7=0
х= -7
II варианта)
ОДЗ:х-любое число
б)
ОДЗ:а-любое число,кроме а≠4
4-а=0
-а= -4
а=4
в)
ОДЗ:а-любое число, кроме а≠4,а≠ -4
а²-16=0
(а-4)(а+4)=0
а-4=0 или а+4=0
а=4 а= -4
г)
ОДЗ:х-любое число
х²+4=0
х²≠ -4
ответ:уравнение не существует, квадрат числа не может быть отрицательным
д)
ОДЗ:х-любое число,кроме х≠4,х≠ -4
х-4=0 или х+4=0
х=4 х= -4
е)
ОДЗ:а-любое число,кроме а≠0,а≠1
а=0 или а-1=0
а=1
ОДЗ-область допустимых значений