Решите уравнение
1. sin²x - sin x = 0 ;
2. 2cos²x - sin x - 1 = 0 .
- - - - - - - - - - - - -
1.
sin²x - sin x =0 ⇔sinx(sinx - 1) =0 ⇔ [ sinx =0 ; sinx -1 =0 .( совокупность ур.)
а) sinx = 0 ⇒ x =πk , k∈ℤ .
б) sinx =1 ⇒ x =π/2+ 2πn , n∈ℤ .
- - -
2.
2cos²x - sin x - 1 = 0 ;
2(1 -sin²x) - sin x - 1 = 0 ;
2 -2sin²x - sin x - 1 = 0 ;
-2sin²x - sin x + 1 = 0 ;
2sin²x + sin x - 1 = 0 ;
sinx =(-1±√( (1 -4*2(-1) ) ) /2*2
а) sinx = (-1 -3) /4 = - 1 ⇒ x = -π/2 +2πk , k ∈ℤ ;
б) sinx = (-1 +3) /4 = 1/2 ⇒ x = (-1)ⁿπ/6 +πn , n ∈ℤ .
1) Точки пересечения с осями.
- с осью Оу: х = 0, у =0^3+0^2-16*0-16 = -16, точка (0; -16).
- с осью Ох: у = 0.
x^3+x^2-16x-16 = 0.
Преобразуем заданное уравнение:
у =x^3+x^2-16x-16 = х²(х+1)-16(х+1) = (х²-16)(х+1) = (х-4)(х+4)(х+1).
у = 0, (х-4)(х+4)(х+1) = 0.
Отсюда получаем 3 корня уравнения: х₁ = 4, х = -4, х = -1.
2) Для того, чтобы найти экстремумы, нужно найти производную и приравнять её нулю и корни этого уравнения будут экстремумами данной функции:
y' = 3x² + 2 x - 16 = 0.
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:
D=2^2-4*3*(-16)=4-4*3*(-16)=4-12*(-16)=4-(-12*16)=4-(-192)=4+192=196;
Дискриминант больше 0, уравнение имеет 2 корня:
x₁=(√196-2)/(2*3)=(14-2)/(2*3)=12/(2*3)=12/6=2;
x₂=(-√196-2)/(2*3)=(-14-2)/(2*3)=-16/(2*3)=-16/6=-(8/3) ≈ -2,6667.
Значит, экстремумы в точках:
((-8/3); (400/27)),
(2, -36).
3) Определяем минимумы и максимумы функции и промежутки знакопостоянства.
Для этого находим значения производной вблизи критических точек.
х = -3 -2.667 -2 1 2 3
у' = 5 0 -8 -11 0 17.
Где производная меняет знак с + на - там максимум функции ((х=(-8/3); у= (400/27)), а где меняет знак с - на + там минимум функции (х=2; у=-36)).
Функция возрастает на промежутках -∞ < x < (-8/3) и 2 < x < +∞,
а убывает на промежутке (-8/3) < x < 2.
4) Найдем точки перегибов, для этого надо решить уравнение
y'' = 0 (вторая производная равняется нулю), корни полученного уравнения будут точками перегибов для указанного графика функции,
ответ