Пусть сторона квадрата х см, тогда длина прямоугольника (3х) см, а ширина прямоугольника - (х - 5) см.
Т.к. площадь квадрата находят по формуле S = а², где а - сторона квадрата, о площадь данного квадрата равна (х²) см².
А т.к площадь прямоугольника находят по формуле S = a · b, где a и b - длина и ширина прямоугольника, то площадь данного прямоугольника будет равна S = 3х · (х - 5) = 3х² - 15х (см²).
Т.к. площадь квадрата на 50 см² меньше площади прямоугольника, то составим и решим уравнение:
3x² - 15х = x² + 50,
3x² - x² - 15x - 50 = 0,
2x² - 15x - 50 = 0,
D = (-15)² - 4 · 2 · (-50) = 225 + 400 = 625 ; √625 = 25,
x₁ = (15 + 25)/(2 · 2) = 40/4 = 10,
x₂ = (15 - 25)/(2 · 2) = -10·/4 = -2,5 - не подходит по условию задачи.
Значит, сторона квадрата равна 10 см.
ответ: 10 см.
х кг - масса первого сплава
у кг - масса второго сплава
Первое уравнение:
х + у = 400
8% = 0,08
12% = 0,12
9% = 0,09
0,08х кг - масса олова в первом сплаве
0,12у кг - масса олова во втором сплаве
0,09 · 400 = 36 кг - масса олова в новом сплаве
Второе уранение:
0,08х + 0,12у = 36
А теперь решаем систему:
{х + у = 400
{0,08х + 0,12у = 36
Из первого уравнения выразим у
у = 400 - х
и подставим во второе
0,08х + 0,12·(400 - х) = 36
0,08х + 48 - 0,12х = 36
0,08х -0,12х = 36 - 48
-0,04х = - 12
х = -12 : (-0,04)
х = 300 кг - первого сплава надо взять
400 - 300 = 100 кг - второго сплава
ответ: 300 кг; 100 кг.
Объяснение: