Касательная задается уравнением:
y = f ’(x0) · (x − x0) + f (x0)
Здесь f ’(x0) — значение производной в точке x0, а f (x0) — значение самой функции.
В точке пересечения графика с осью ординат переменная х равна 0.
f(x=0) = √2.
f'(x) = (-5/(2√(2-5x))), f'(x=0) = -5/(2√2)
Тогда уравнение касательной в точке х = 0 имеет вид:
у(кас) = (-5/(2√2))*х + √2 или с приближёнными значениями:
у(кас) = -1,76777х + 1,414214.
В решении.
Объяснение:
Построй график функции y= −x²+2x+2.
Чтобы построить график, определи:
1) направление ветвей параболы (вниз или вверх)
График парабола, ветви направлены вниз, так как коэффициент при х отрицательный.
2) точку пересечения графика с осью Oy.
График пересекает ось Оу при х=0.
y= −x²+2x+2
х=0
у=-0+0+2
у=2
Координаты точки пересечения графиком оси Оу (0; 2)
3) координаты вершины параболы y= −x²+2x+2:
определяются по формуле:
х₀= -b/2a= -2/-2=1
у₀= -(1²)+2*1+2= -1+2+2=3
Координаты вершины параболы (1; 3)
4) заполни таблицу значений:
х -3 -2 -1 0 1 2 3 4 5
у -13 -6 -1 2 3 2 -1 -6 -13