М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Заяцэ
Заяцэ
21.11.2022 21:53 •  Алгебра

609. Перемножьте многочлены:​

👇
Ответ:
CawaVlasov
CawaVlasov
21.11.2022

1....

2....

3....

4....


609. Перемножьте многочлены:​
4,5(21 оценок)
Открыть все ответы
Ответ:
masha200012315563
masha200012315563
21.11.2022

Угадываем корни 2 и - 2. Заметим, что \sqrt{1+\frac{1}{2}x\sqrt{4-x^2}}=\frac{1}{2}\sqrt{4+2x\sqrt{4-x^2}}=\frac{1}{2}\sqrt{(x^2+2x\sqrt{4-x^2}+(4-x^2)}=

=\frac{1}{2}\sqrt{(x+\sqrt{4-x^2})^2}=\frac{1}{2}|x+\sqrt{4-x^2}|. ОДЗ: x\in[-2;2]. Пытаемся доказать, что других корней нет.

1) x\le -\sqrt{2}; уравнение принимает вид

f(x)=-x-\sqrt{4-x^2}+2\sqrt{2-x}+2\sqrt{2+x}=6;\

f'(x)=-1+\frac{x}{\sqrt{4-x^2}}-\frac{1}{\sqrt{2-x}}+\frac{1}{\sqrt{2+x}};

f''(x)=\frac{4}{(4-x^2)^{3/2}}-\frac{1}{2(2-x)^{3/2}}-\frac{1}{2(2+x)^{3/2}}=\frac{8-(2-x)^{3/2}-(2+x)^{3/2}}{2(4-x^2)^{3/2}}.

Исследуем знак второй производной: f''(x)=0 - когда \left \{ {{a^3+b^3=1} \atop {a^2+b^2=1}} \right. , где

a=\frac{\sqrt{2-x}}{2};\ b=\frac{\sqrt{2+x}}{2}. Поскольку a³≤a², b³≤b², причем при a∈(0,1); b∈(0,1) неравенства строгие, делаем вывод, что такое возможно только при a=1; b=0 или a=0; b=1, при прочих a и b, удовлетворяющих второму уравнению, сумма их кубов будет меньше 1, откуда вторая производная всюду неотрицательна, то есть функция вогнута. А поскольку f(-\sqrt{2})=2\sqrt{2-\sqrt{2}}+2\sqrt{2+\sqrt{2}} других решений на промежутке[-2,-\sqrt{2}] нет.

2) x\ge -\sqrt{2}; уравнение принимает вид

f(x)=x+\sqrt{4-x^2}+2\sqrt{2-x}+2\sqrt{2+x}=6;

 На этом участке подобное рассуждение не проходит; кроме x=2 точно есть корень слева от нуля, поскольку f(0)>6. Будем рассуждать иначе.

a=\sqrt{2-x}\ge0;\ b=\sqrt{2+x}\ge 0;\ a^2+b^2=4; b=2\cos t; a=2\sin t; t\in [0;\frac{\pi}{2}];

b^2-a^2=4\cos 2t=2x; x=2\cos 2t; уравнение превращается в

2\cos 2t+2\sin 2t+4\sin t+4\cos t=6; 2\sin t+2\cos t=3-\cos 2t-\sin 2t.

Обе части положительны, смело возводим в квадрат (а можно было и к половинному углу свести):

4+4\sin 2t=9+1-6\cos 2t-6\sin 2t+2\sin 2t \cdot\cos 2t;

6-6cos 2t-10sin 2t+2sin 2t cos 2t=0;

12sin² t-20 sin t cos t+4sin t cos t(cos² t-sin² t)=0; sin t=0 (⇒ a=0; b =2; x=2) или 3 sin t-5cos t+cos³ t-cos t sin² t=0;

(3sin  t-5cos t)(cos²t+sin²t)+cos³ t-cos t sin^2 t=0;

3sin³t-6sin²t cos t+3sin t cos²t-4cos³ t=0; очевидно cos t≠0; tg t=p;

3p³-6p²+3p-4=0; домножаем на 9 и замена 3p=q: q³-6q+9q-36=0;

(q-2)³-3(q-2)-34=0; q-2=m+\frac{1}{m};m^3+\frac{1}{m^3}-34=0;\ m^3=n;\ n^2-34n+1=0; n=17\pm\sqrt{288}=17\pm12\sqrt{2};

q-2=\sqrt[3]{17\pm12\sqrt{2}}+\frac{1}{\sqrt[3]{17\pm12\sqrt{2}}}; но \sqrt[3]{17+12\sqrt{2}}\cdot \sqrt[3]{17-12\sqrt{2}}=1\Rightarrow

q=2+\sqrt[3]{17+12\sqrt{2}}+\sqrt[3]{17-12\sqrt{2}};\ p=\frac{2+\sqrt[3]{17+12\sqrt{2}}+\sqrt[3]{17-12\sqrt{2}}}{3};

 b=2\cos t=2\cos ({\rm arctg}\, p)=\frac{2}{\sqrt{p^2+1}};\ 2+x=b^2; x=b^2-2.

Вот этот корень мы и искали. Подставлять найденное p для выписывания  b,  а затем  x, сил уже не осталось.

Возможно, я где-то ошибся, но ошибку пока не вижу. Засим разрешите откланяться.      

4,6(67 оценок)
Ответ:
Kamilamar
Kamilamar
21.11.2022
N1
а) 4sin³x -8sin²x -sinx +2 =0 ;
4sin²x(sinx-2) -(sinx -2) =0 ;
(sinx -2)(4sin²x -1) = 0 ⇔[ sinx -2 =0 ;4sin²x -1 =0. 
sinx -2 =0⇔sinx =2  ||  > 1 →нет решения.||
4sin²x -1= 0 ⇔4*(1-cos2x)/2 -1 = 0 ⇔cos2x =1/2 ⇒2x =±π/3 +2πk , k∈Z.

ответ: ±π/6 +πk , k∈Z.
---
б)  ;  
(1-cos²x) -2cosx +2 =0  * * *  можно заменить   t =cosx ,  |t| ≤1 * * *
cos²x +2cosx -3  =0 ⇒[cosx = -3(не имеет решения) ; cosx =1.

ответ: 2πk , k∈Z.
-------
N2
а)  ⇔ 7^(5x-1)(7 -1) =6⇔ 7^(5x -1)*6 =6⇔7^(5x -1) =1.
7^(5x -1) =7⁰ ⇒5x-1 =0 ;  x =0,2.
---
б)  ;  
ОДЗ :  { 2x+4 >0 ; 4x -7 >0 ; 4x -7 ≠1. ⇒ x∈(1,75 ;2) U(2 ;∞).

Lq(2x+4) =2Lq(4x-7)⇒Lq(2x+4) =Lq(4x-7)² ;2 x+4 =(4x -7)² ;
16x² -58x +45 =0 ;
D/4 =29² -16*45 =841 -720 =121 =11²
x₁= (29 -11)/16 = 9/8 ∉ОДЗ .
x₂ =(29 +11)/16 = 5/2.

ответ: 2,5.
-------
N3
а)    ;
y ' =( (x² +2x)' (3-4x) - (x² +2x)*(3-4x) ') /(3-4x)² =
( (2x+2)(3 -4x) +4(x² +2x)) /(3-4x)² = -2(2x² -3x-3)/(3-4x)².
---
б)  ;
y ' =((5x+2)⁴) ' =4*(5x+2)³*(5x+2)' =4*(5x+2)³*5=20(5x+2)³ .
-------
N3
а) а)  =(1/6)*x +C.
---
б)  =(-1/3 )интеграл( e^(4-3x)d(4-3x) =(-1/3)e^(4-3x) +C.

Будьте любезны, господа хорошие, решите следующие уравнения: №1 a) б) №2 а) б) №3 ( вычислить произв
Будьте любезны, господа хорошие, решите следующие уравнения: №1 a) б) №2 а) б) №3 ( вычислить произв
Будьте любезны, господа хорошие, решите следующие уравнения: №1 a) б) №2 а) б) №3 ( вычислить произв
Будьте любезны, господа хорошие, решите следующие уравнения: №1 a) б) №2 а) б) №3 ( вычислить произв
4,6(48 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ