Графически это выглядит следующим образом (см. вложение). Нам нужна площадь области, выделенной красным цветом (честно говоря, полчаса соображал, как это сделать в программе, чтобы она меня поняла)).
Алгоритм такой: 0. Обе параболы поднимаются на 1 единицу вверх, чтобы мы могли вычислить определённый интеграл (он ограничен осью x). Площадь фигуры при этом не изменится, так что всё нормально. 1. Вычисляется площадь фигуры под ; 2. Теперь — под ; 3. Разность площадей и будет искомой фигурой.
По дороге ещё придётся найти нули функции, т. к. для определённого интеграла нужна область вычисления.
Поехали.
1)
2)
3) (кв. ед.)
Вроде бы так... :) Попробую сейчас проверить решение.
Пусть масса первого раствора х г, а масса второго раствора у г., тогда масса кислоты в первом растворе равна 0,1х г, а во втором 0,12у г. По условию, эти массы равны. Составляем первое уравнение: 0,1х=0,12у Также, по условию, общая сумма массы растворов равна 4 кг 400 г или 4400 г. Составим второе уравнение: х+у=4400 Решим систему уравнений: {0,1x=0,12y => {0,1x=0,12y => {0,1(4400-y)=0,12y => {x+y=4400 {x=4400-y {x=4400-y
Графически это выглядит следующим образом (см. вложение). Нам нужна площадь области, выделенной красным цветом (честно говоря, полчаса соображал, как это сделать в программе, чтобы она меня поняла)).
Алгоритм такой:
0. Обе параболы поднимаются на 1 единицу вверх, чтобы мы могли вычислить определённый интеграл (он ограничен осью x). Площадь фигуры при этом не изменится, так что всё нормально.
1. Вычисляется площадь фигуры под
2. Теперь — под
3. Разность площадей
По дороге ещё придётся найти нули функции, т. к. для определённого интеграла нужна область вычисления.
Поехали.
1)
2)
3)
Вроде бы так... :)
Попробую сейчас проверить решение.
upd: да, всё сошлось.