* * * * * * * * * * * * * * * * * * * * * * * * * * *
ответ: а) F(x) = x³/3 -9 ; б) F(x) = sin(x)+(32-√3)/2 .
Найти первообразную функции y=f(x), график которой проходит через данную точку
а) y=x² ; D(3;0)
б) y=2cos²x/2-1 ; M(π/3; 16)
Объяснение:
а) F(x) = ∫ydx = ∫ x²dx = x³/3+ C
т.к. точка D(3;0) ∈ гр. F(x) , то 0 = 3³/3+ C ⇒ C = - 9 , значит F(x) = x³/3 -9 .
б) F(x) = ∫ydx =∫( 2cos²(x/2) - 1 )dx = ∫cos(x)dx = sin(x)+C
т.к. точка M(π/3; 16) ∈ гр. F(x) , то 16 = sin(π/3)+ C ⇒C =16-√3 /2=(32-√3)/2 значит F(x) = sin(x)+(32-√3)/2 .
* * *cos²α =(1+cos2α) / 2 * * *
! 2cos²(x/2) - 1=cos²(x/2) - ( 1-cos²(x/2) ) =cos²(x/2)-sin²(x/2) =cos2*x/2 =cosx
ответ:4048
Объяснение: 1. Заметим, что из угловых клеток шахматный конь может прыгнуть ровно в 2 различные клетки, следовательно, в угловых клетках записано число 2. Таким образом, вклад от угловых клеток равен 2⋅4=8.
2. Заметим, что в соседних с угловыми клетках, расположенных на краю доски, записано число 3. Следовательно, вклад от таких клеток в общую сумму даст 3⋅8=24.
3. Для остальных клеток, расположенных на краю доски (которых ровно 4⋅(24−4)=80 штук) существует ровно передвинуть шахматного коня на новую клетку, а значит, в этих клетках записано число 4. Кроме того, в клетках, соседних по диагонали с угловыми, также записано число 4. Отсюда вклад тех клеток, в которых записано число 4, равен 4⋅80+4⋅4=336.
4. Для остальных клеток, которые расположены во втором столбце в начале и в конце доски, а также во второй строчке вверху и внизу доски, записано число 6. Таких клеток ровно 80 штук, и вклад от них равен 80⋅6=480.
5. Из остальных клеток, очевидно, шахматный конь может перейти в новые и это максимально возможное число Поскольку оставшихся клеток ровно (24−4)2=400 штук, то сумма чисел, записанных в этих клетках, составляет 8⋅400=3200.
6. Суммируя значения, записанные в клетках доски, получим
8+24+336+480+3200=4048.