М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
nataliyadydina
nataliyadydina
26.12.2020 14:56 •  Алгебра

Из города а в город б одновременно выехали два автомобилиста. первый проехал с постоянной скоростью весь путь. второй проехал первую половину пути со скоростью, меньшей скорости первого на 15 км/ч, а вторую половину пути - со скоростью 90 км/ч, в результате чего прибыл и в б одновременно с первым автомобилистом. найдите скорость первого автомобилиста, если известно, что она больше 54 км/ч.ответ дайте в км/ч

👇
Ответ:

Пусть скорость первого автомобилиста равна x км/ч, а длина пути равна s км [Величина s введена для удобства, она потом сократится]. Тогда скорость второго автомобилиста на 1-й половине пути равна x-15 км/ч. Время, за которое 1-й автомобилист проехал весь путь равно t1 = s/x. Второй автомобилист проехал 1-ю половину пути за время t2_1 = (s/2):(x-15) = s/(2*(x-15)), а вторую половину пути – за время (s/2)/90 =s/180; время всюду измеряется в часах.  По условию, t1 = t2_1+t2_2.  Получаем уравнение:

s/x = s/(2*(x-15)) + s/180

Сократим (как и было обещано J ) на s и решим уравнение.

1/x = 1/(2*(x-15)) + 1/180                                                    (2)

2*(x-15)*180 = 180*x + 2*(x-15)*x

(x-15)*180 = 90*x + (x-15)*x

180*x – 15*180 = 90*x + x2 – 15*x

180*x – 15*180 = 90*x + x2 – 15*x

x2 + (90-15 – 180)*x +15*180 = 0

x2 — 105*x +15*180 = 0

Решим полученное квадратное уравнение.

D = 1052 – 4*15*180 = (7*15)2 – 4*15*(15*12) =

= 152*(72 – 4*12) = 152*(49 – 48) = 152

Следовательно, уравнение (2) имеет 2 корня:

x1 = (105+15)/2 = 60; x2 = (105-15)/2 = 45

Так как x>54, то x=60

ответ  60


4,5(4 оценок)
Открыть все ответы
Ответ:
валенок123
валенок123
26.12.2020

1)Определение. Первообразной для функции f называется такая функция F, производная которой равна данной функции.

2)Если F1 и F2 – две первообразные для одной и той же функции f, то они отличаются на постоянное слагаемое. ... Функция, производная которой тождественно равна нулю, является постоянной. Итак, F1 – F2 = С. Таким образом, все первообразные для функции f получаются из одной из них прибавлением к ней произвольной постоянной.

3)совокупность первообразных функции и называется непределенным интегралом от функции . Совокупность всех первообразных функции называется неопределенным интегралом от и обозначается символическим выражением , которое читается "интеграл от эф от икс по дэ икс".

4) Знак интеграла (∫) используется для обозначения интеграла в математике.

5)Множество всех первообразных F(x)+C функции f(x) называется неопределенным интегралом функции f(x) и обозначается . Символ называется интегралом, f(x) называется подынтегральной функцией, f(x)dx называется подынтегральным выражением, x называется переменной интегрирования.

6)Подынтегральное выражение представляет собой дифференциал функции f(x). Действие нахождения неизвестной функции по заданному ее дифференциалу называется неопределенным интегрированием, потому что результатом интегрирования является не одна функция F(x), а множество ее первообразных F(x)+C.

7)Если – одна из первообразных некоторой функции , то совокупность всех первообразных этой функции можно представить в виде , где C – произвольная постоянная. Функция, имеющая первообразную в некотором промежутке, называется интегрируемой, а процедуру нахождения первообразной называют интегрированием этой функции.

8)Неопределенный интеграл его свойства. ... Множество всех первообразных некоторой функции f(x) называется неопределенным интегралом функции f(x) и обозначается как ∫f(x)dx. Таким образом, если F - некоторая частная первообразная, то справедливо выражение ∫f(x)dx=F(x)+C, где C - произвольная постоянная.

9)Метод интегрирования, при котором интеграл с тождественных преобразований подынтегральной функции и применения свойств интеграла приводится к одному или нескольким табличным интегралам, называется непосредственным интегрированием.

10)Геометрически определённый интеграл выражает площадь «криволинейной трапеции», ограниченной графиком функции[⇨].

11)Формула Ньютона-Лейбница - даёт соотношение между операциями взятия определенного интеграла и вычисления первообразной. Формула Ньютона-Лейбница - основная формула интегрального исчисления. Данная формула верна для любой функции f(x), непрерывной на отрезке [а, b], F - первообразная для f(x).

12)Криволинейная трапеция – плоская фигура, ограниченная графиком неотрицательной непрерывной функции у = f(x), определенной на отрезке [a; b], осью абсцисс и прямыми х = а, х = b – см. рис.

4,7(62 оценок)
Ответ:
armagedon641
armagedon641
26.12.2020

Объяснение:

1.Функция -отношение между элементами, при котором изменение в одном элементе влечёт изменение в другом.Область определения функции-множество, на котором задаётся функция.

2. Начальная функция это y0. Неопределенный интеграл-это совокупность всех первообразных данной функции.

Свойства неопределенного интеграла

1)Производная неопределенного интеграла равна подынтегральной функции; дифференциал от неопределенного интеграла равен подынтегральному выражению, т.е.

2)Неопределенный интеграл от дифференциала некоторой функции равен сумме этой функции и произвольной постоянной, т.е.

3)Постоянный множитель можно вынести из-под знака интеграла, т.е. если то

4)Неопределенный интеграл от алгебраической суммы двух функций равен алгебраической сумме интегралов от этих функций в отдельности, т.е.

Интегрирование- название, данное ряду приемов, используемых для вычисления различных ИНТЕГРАЛОВ.

3.


Что такое Функция? Что такое область определения функции и набор значений? 2. Что такое начальная фу
4,6(100 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ