М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Sofia2224
Sofia2224
02.01.2020 04:54 •  Алгебра

Не выполняя вычисления сравните значение выражения 611²+321² и (611+321)²

👇
Ответ:
Lol11111111000
Lol11111111000
02.01.2020

Объяснение:

Конечно,второе больше,так как второе еще дает удвоенное произведение суммы,а у первого выражения такого нет.

4,8(86 оценок)
Открыть все ответы
Ответ:
Каала
Каала
02.01.2020

ответ

См. вложение.

Объяснение:

Дробь равна нулю тогда и только тогда когда числитель равен нулю а знаменатель не равен нулю.

Числитель приравниваем к нулю, преобразовываем к стандарному квадратному уравнению, используя формулы тригонометрии и замену переменных. Находим решение числителя, получаем две точки, одна не удовлетворяет условию функции синуса (она больше единицы), другая нам подойдет, если будет все ок со знаменателем. Далее проверяем условие знаменателя, он не должен быть равен нулю и должен иметь смысл, то есть числитель дроби, которая стоит в знаменателе исходного уравнения (-sinx) не должен быть равен нулю и знаменатель (cosx) не должен быть равен нулю, иначе дробь в знаменателе исходного уравнения не будет иметь смысла. Синус равен нулю в точках 0 и 2pi, косинус равен нулю в точках pi/2 и -pi/2. Запоминаем эти "плохие" точки, смотрим на наше решение числителя исходного уравнения, делаем вывод о том, что исходное решение не совпадает с "плохими" точками (в решении получаем pi/6 + 2pn и 5pi/6 + 2pn) и записываем ответ.


Решите уравнение задание на фото с подробным обьяснением
4,5(78 оценок)
Ответ:
Wjdjsjsksji
Wjdjsjsksji
02.01.2020

Відповідь:

а) ні

б) так

в) так

г) ні

Пояснення:

Очевидно, що після додавання до парного числа або віднімання від нього одиниці, отримаємо НЕпарне, і навпаки. Уявімо, що гарбузи вже розкладено. Тоді числа гарбузів у будь-яких двох сусідніх кошиках матимуть різну парність.

Нехай у колі розставлено НЕпарну кількість кошиків. Пронумеруємо їх, скажімо, за годинниковою стрілкою. Почнемо для зручності з довільного кошика із НЕпарною кількістю гарбузів. Побачимо, що таке саме непарне число гарбузів міститиме 3-ій кошик (бо в другому — парна кількість гарбузів), 5-ий, ..., останній. Виходить, що в наступному кошику, який під номером "1", повинно бути парне число гарбузів. Але насправді воно НЕпарне. Отримали суперечність.

А от якби було розставлено парну кількість кошиків, то непарне число гарбузів, пронумерованих, як у попередньому абзаці, містив би ПЕРЕДостанній кошик. Тоді останній — парну, а наступний за ним, кошик під номером "1" — знов непарну, як ми й домовлялися.

Отже, здійснити те, що описано в умові задачі, можна, лише якщо використати парну кількість кошиків.

4,8(8 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ