М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ildareeee
ildareeee
31.12.2022 08:28 •  Алгебра

Сравнить числа 1) (1/6)^0,2 и (1/6)^1,2 2) (8)^-0,2 и (8)^-1,2

👇
Ответ:
кукла221
кукла221
31.12.2022
1) Сравнить:(1/6)^0,2 и (1/6)^1,2 
     (1/6)^0.2=1/(6^0.2)
      (1/6)^1.2=1/(6^1.2)
      6^0.2<6^1.2 => (1/6)^0.2>(1/6)^1.2
     
2) Сравнить:(8)^-0,2 и (8)^-1,2
     8^-0.2=1/(8^0.2)
     8^-1.2=1/(8^1.2)
     8^0.2<8^1.2 => 8^-0.2>8^-1.2
4,5(100 оценок)
Открыть все ответы
Ответ:
sherkesovna82
sherkesovna82
31.12.2022
1)Берешь длину отрезка АБ и вычитаешь из его известные кусочки
Нарисуй задачку на бумаге и сама увидишь как все просто.

2)сумма смежных углов=180⁰
пусть х-первый угол,тогда х+20-второй.
х+х+20=180
2х=160
х=80⁰-первый угол.
а)80⁰+20⁰=100⁰-второй угол.
3)Вариант 1:
< ВОД = < СОА вертикальные углы

Пусть < СОА = x
Тогда < АОК = 118 -x

< COA + < AOK = 180

x + (118 -x) + (118-x) = 180

x = 56 градусов--- это и есть угол ВОД
Вариант 2:
Обозначь углы AOK и KOD за х, а угол COB за 2х
COD-KOD=COK
180-х=118
Х=62
COD-COB=BOD
180-(62•2)=56
4,6(27 оценок)
Ответ:
MADHOP2016
MADHOP2016
31.12.2022

условно сходится

Объяснение:

Для выяснения сходимости ряда используем признак Лейбница.

a_{n}= \frac{1}{\sqrt{3n+1}}

Очевидно, что

1. a_{1}\geq a_{2}\geq ...\geq a_{n}\geq ..., так как с увеличением номера n увеличивается знаменатель, а с ростом знаменателя дробь становится все меньше и меньше;

2.\lim_{n \to \infty} a_n= \lim_{n \to \infty} \frac{1}{\sqrt{3n+1} }=0

Надеюсь, данный факт ясен.

Два условия выполнены, следовательно, ряд по признаку Лейбница сходится.

Выясним вопрос относительно абсолютной сходимости. Для этого нужно рассмотреть соответствующий ряд из модулей исходного ряда.

Напомню, что модуль "съедает" множитель вида  (-1)^{n+1}. Значит, общий член нового ряда имеет вид u_{n}= \frac{1}{\sqrt{3n+1}}.

Для установления сходимости данного ряда используем интегральный признак Коши. Это можно сделать, поскольку  действительнозначная функция

                    u(x)= \frac{1}{\sqrt{3x+1}}

неотрицательна, непрерывна и убывает на интервале [1,\infty)

Можно рассмотреть несобственный интеграл. Исследуем его на сходимость. подробности в приложенном файле.

Итак,  получена бесконечность, стало быть, несобственный интеграл расходится.

Ряд сходится либо расходится вместе с несобственным интегралом. То есть, расходится.                                   

Таким образом, сам ряд сходится. Но ряд из модулей расходится, что исключает абсолютную сходимость ряда. А сходящийся ряд, не сходящийся абсолютно, сходится условно.


Установить, сходится или расходится знакочередующийся ряд, если сходится, то выяснить каким образом:
4,6(78 оценок)
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ