ответ:
объяснение:
5x^3 - 3x^5 = 0
x^3( 5 - 3x^2) = 0
x = 0
5 - 3x^2 = 0
-3x^2 = -5
x^2 = 5/3
x = -5/3
x = 5/3 (нули функции: -5/3; 0 ; 5/3 )
15x^2 - 15x^4 = 0
x^2 - x^4 = 0
x^2(1 - x^2) = 0
x^2 = 0
x = 0
1 - x^2 = 0
(1-x)(1+x) = 0
x = 1, x = -1
5 * 1^3 - 3 *1^5 = 5 - 3 = 2
-5 + 3 = -2
(1; 2) - точка максимума
(-1; -2) - точка минимума
--(-)--(-1)-(+)--0--(+)--(1) --(-)->
там где на интервале (-) там функция убывает, где (+) наоборот, т. е.
(-00; -1) - функция убывает
(-1; 0) - функция возрастает
(0; 1) - функция возрастает ( или (-1; 1))
(1; + 00) - функция убывает
В решении.
Объяснение:
2) -24у² + (8 - у)³ + у³ <=0
В скобках куб разности, разложить по формуле:
-24у² + 512 - 192у + 24у² - у³ + у³ <= 0
После сокращений:
512 - 192у <= 0
-192y <= - 512
192y >= 512 (знак неравенства меняется при делении на -1)
у >= 512/192
y >= 8/3
Решение неравенства у∈[8/3; +∞).
На числовом луче штриховка от 8/3 ( 2 и 2/3) вправо до + бесконечности.
Кружок возле 8/3 закрашенный, значение входит в решения неравенства.
4) у³ - 27у² - (у - 9)³ > 0
В скобках куб разности, разложить по формуле:
у³ - 27у² - (у³ - 27у² + 243у - 729) > 0
Раскрыть скобки:
у³ - 27у² - у³ + 27у² - 243у + 729 > 0
После сокращений:
- 243у + 729 > 0
-243у > -729
243у < 729 (знак неравенства меняется при делении на -1)
у < 729/243
y < 3
Решение неравенства у∈(-∞; 3).
На числовом луче штриховка от - бесконечности вправо до 3.
Кружок возле 3 не закрашенный, значение не входит в решения неравенства.