Відповідь:
Еще недавно, учась сложению чисел, мы складывали кучки из монет. Тогда перед нами стояла задачи сложить две кучки. Но допустим, мы хотим теперь сложить не две, а несколько кучек. Это можно было бы сделать так: сгребаем их все сразу в одну большую кучу и пересчитываем в ней все монеты. Такой сложения всем бы был хорош, да только ни на счетах, ни на бумаге нельзя сделать ничего подобного. На счетах и бумаге мы умеем складывать между собой только два числа. Поэтому мы не будем сгребать вместе сразу все кучки, а поступим так, чтобы все наши действия можно было легко перенести на бумагу.
Итак, перед нами несколько кучек из монет. Мы знаем, сколько монет в каждой кучке, и теперь мы хотим узнать, сколько же у нас всего монет во всех кучках. Мы берем любые две кучки и сдвигаем их вместе, образуя одну новую кучку побольше. Умея складывать два числа на бумаге, мы сможем легко вычислить, сколько у нас монет в новой кучке без фактического их пересчета. Теперь у нас стало на одну кучку меньше. Далее, берем еще две кучки, сливаем их воедино, вычисляем новое число монет в только что образованной кучке и, таким образом, снова уменьшаем количество кучек на одну. Мы повторяем и повторяем эту процедуру, уменьшая всякий раз число кучек на единицу, до тех пор пока у нас не останется одна-единственная большая куча. Число монет в этой куче нам известно, причем вычислили мы его на бумаге, а не прямым пересчетом.
Очевидно, мы получим один и тот же ответ, совершенно независимо от того, в каком порядке мы сдвигали кучки. А значит, когда перед нами находится сумма чисел, например,
8 + 9 + 2, мы можем вычислять ее тоже в любом порядке. Поэтому мы всегда будем выбирать такой порядок, какой для нас наиболее удобен. В данном случае удобно вначале сложить восьмерку и двойку, а потом добавить девятку:
8 + 2 + 9 = 10 + 9 = 19.
Выразим у через х:
4у = x^2 - 4x
y = 0,25x^2 - x
Парабола, служащая графиком квадратного трехчлена, обычно задается уравнением y = Ax^2 + Bx + C, где A, B, и C — константы. Ось такой параболы параллельна оси ординат. Координаты вершины параболы равны (-B/2A, - B^2/(4A) + C).
Находим координаты вершины: (2; -1)
Такая парабола полностью эквивалентна параболе, заданной уравнением y = Ax^2, сдвинутой путем параллельного переноса на -B/2A по оси абсцисс и на -B^2/(4A) + C по оси ординат. Это легко проверить заменой координат. Следовательно, если вершина параболы, заданной квадратичной функцией, находится в точке (x, y), то фокус этой параболы находится в точке (x, y + 1/(4A)).
Итак, координаты фокуса: (2; 0)
А)![2^3*2^2=2^5](/tpl/images/0125/9986/4c8ea.png)
Б)![2^9:2^6=2^4](/tpl/images/0125/9986/066de.png)
В)![(-0.5)^1^0:(-0.5)^4=0.5^6](/tpl/images/0125/9986/cdc63.png)