Представим, что из каждой вершины выходит по одной стрелке. В этом случае количество стрелок равно количеству вершин. Поменяем направление одной стрелки: появится вершина, из которой выходит две стрелки, и вершина, в которой сходятся две стрелки. Чтобы найти общее количество вершин многоугольника нужно сложить количество вершин, из которых выходит только одна стрелка, и удвоенное количество вершин, из которых выходит две стрелки (т.к. на каждую вершину, из которой выходит две стрелки, приходится вершина, в которой сходятся две стрелки). 10 + 20*2 = 50
Или
Обозначим каждую вершину 1, 2, 0. 1 - если выходит одна стрелка, 2 - если две, 0 - ни одной. Меняя направление стрелки мы вычитаем 1 из одной вершины и прибавляем 1 к другой. Общая сумма не меняется и равна количеству вершин.
Формула квадратичной функции — формула вида y=ax²+bх+c Пересечение графика с осью абсцисс (т.е. с горизонтальной) — это корни уравнения ax²+bx+c=0 Корни уравнения в данном случае — это 5 и (-1) По теореме Виета в уравнении ax²+bx+c=0: с=5*(-1)=-5, -b=5-1=4, т.е. b=-4 Экстремум квадратичной функции — это вершина параболы. Вершина параболы находится по формуле ув.=(4ac-b²)/(4a), где ув. — координата вершины по игрику. Нам известны yв., в и с. Cоставим уравнение. -9=(4*a*(-5)-16)/(4a) … a=1 ответ: y=x²-4x-5.
Чтобы найти общее количество вершин многоугольника нужно сложить количество вершин, из которых выходит только одна стрелка, и удвоенное количество вершин, из которых выходит две стрелки (т.к. на каждую вершину, из которой выходит две стрелки, приходится вершина, в которой сходятся две стрелки).
10 + 20*2 = 50
Или
Обозначим каждую вершину 1, 2, 0. 1 - если выходит одна стрелка, 2 - если две, 0 - ни одной. Меняя направление стрелки мы вычитаем 1 из одной вершины и прибавляем 1 к другой. Общая сумма не меняется и равна количеству вершин.