М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
marivenkova
marivenkova
21.06.2022 14:14 •  Алгебра

я больше не могу МОЛЮ ИНАЧЕ МЕНЯ УБЬЮТ с может ваш отличник сможет решить? Все таки потратил(

👇
Ответ:
lilyamkrtchyan1
lilyamkrtchyan1
21.06.2022

1. Разложим, выделив полные квадраты где возможно и посмотрим, можно ли

1) \ 4x^2-4xy+2y^2-2y+1=(2x)^2-2\cdot 2x\cdot y+y^2+y^2-2y+1 = \\ =(2x-y)^2+(y-1)^2

Вот и получили сумму квадратов, а квадрат любого действительного числа (именно такие мы рассматриваем) неотрицателен, то данное выражение отрицательные значения принимать не может. ответ: нет.

2) \ 1-8ab+4a^2b^2+4a^2+b^2 = (2a)^2-2\cdot 2a\cdot b+b^2 -4ab+4a^2b^2+1 = \\=(2a+b)^2+(2ab)^2-2\cdot2ab\cdot1+1^2 = (2a+b)^2+(2ab-1)^2

Здесь ситуация аналогичная и ответ: нет.

2. Решаем уравнения

1)\ y^3-24y^2=216-9y;\ y^2(y-24)-9(24-y)=0; \\ (y-24)(y^2+9)=0 \Rightarrow y=24

Вторая скобка содержит в себе квадрат и положительное слагаемое, она всегда положительна, так что нулю может быть равна только первая скобка, откуда искомый корень и нашли. ответ: y=24

2) \ 16x^3+12x^2=4x+3; \ 4x^2(4x+3)-(4x+3)=0; \\ (4x+3)(4x^2-1)=0; \ (4x+3)(2x-1)(2x+1)=0

Произведение равно нулю, когда хотя бы один из сомножителей равен 0, это совокупность на языке множеств.

\displaystyle (4x+3)(2x+1)(2x-1)=0 \Leftrightarrow \left[\begin{array}{ccc}4x+3=0\\2x+1=0\\2x-1=0\end{array} \Rightarrow \left[\begin{array}{ccc}x=-\frac{3}{4} \\x=-\frac{1}{2} \\x=\frac{1}{2} \end{array}

В порядке убывания ответ будет такой:

\displaystyle \frac{1}{2}; \ -\frac{1}{2}; \ -\frac{3}{4}

3. Просто раскладываем:

1) \4a^2-4b^2-a-b=4(a^2-b^2)-(a+b)=4(a-b)(a+b)-(a+b)= \\ =(a+b)(4(a-b)-1)=(a+b)(4a-4b-1) \\ 2) \ 9x^2-9y^2-3x+3y = 9(x^2-y^2)-3(x-y)=\\ =9(x-y)(x+y)-3(x-y)=3(x-y)(3(x+y)-1) = \\ =3(x-y)(3x+3y-1) \\ 3) 16p^2-y^2+8y-16 = (4p)^2 -(y^2-2\cdot y\cdot 4+4^2) = \\= (4p)^2-(y-4)^2 =(4p-(y-4))(4p+(y-4)) =\\ = (4p-y+4)(4p+y-4) \\ 4) \ 0.25a^2-a-b^2+1 = (0.5a)^2-2\cdot 0.5a\cdot1+1^2-b^2 = \\= (0.5a-1)^2-b^2 = (0.5a-1-b)(0.5a-1+b)

4. Аналогично (если вы не проходили, корни, что вероятнее всего, так как это 7-ой класс, то в 1 примере последнее на пиши, остановись на предпоследнем шаге):

1) \ a^3-7a^2-3a+21 = a^2(a-7)-3(a-7) = (a-7)(a^2-3) = \\ =(a-7)(a-\sqrt{3})(a+\sqrt{3}) \\ 2)\ 3x^4-8x^3+12x-32 = x^3(3x-8)+4(3x-8)=(3x-8)(x^3+4)\\ 3) \ a^5-6a^4+a^3-6a^2 = a^4(a-6)-a^2(a-6)=(a-6)(a^4-a^2) = \\ =(a-6)a^2(a^2-1)=a^2(a-6)(a-1)(a+1) \\ 4) \ 11x^7-11x^6+6x^5-6x^4 = 11x^6(x-1)+6x^4(x-1) =\\= (x-1)(11x^6+6x^4)=x^4(x-1)(11x^2+6)

5. Тут уже даже первое действие дано

1) \ 6b^2-6a^2-7b+7a=(6b^2-6a^2)-(7b-7a)=\\=6(b^2-a^2)-7(b+a) = 6(b-a)(b+a)-7(b+a)= \\ =(b+a)(6(b-a)-7)=(a+b)(6b-6a-7) \\ 2) x^4+x^3y-3x-3y = (x^4+x^3y)-(3x+3y) =\\= x^3(x+y)-3(x+y)=(x+y)(x^3-3)

4,6(11 оценок)
Открыть все ответы
Ответ:
ponfilovden
ponfilovden
21.06.2022
Модуль любого числа a= a   при a>=0 и -a когда a<0
пример  |7|=7  так как 7>0  |-5|=5  так> как -5<0   модуль всегда число равное или большее 0. Это относится и к выражениям, только надо найти х когда выражение положительное и когда отрицательное. |x-1|=x-1 при
x-1>=0
x>=1    и  -(x-1)=1-x  при x-1<0  x<1

Ваш пример  |2-3.5x|=6.2
2-3.5x>=0   3.5x<=2   x<=2/(3 1/2)=4/7    2-3.5x=6.2  7/2 x=2-6.2= -4 1/5=
=-21/5  x=-21/5*2/7=-42/35=-6/5=-1.2

2-3.5x<0  x>4/7  
3.5x-2=6.2   3.5x=8.2  7/2x=41/5   x=41/5*2/7=82/35
4,7(80 оценок)
Ответ:
okda2
okda2
21.06.2022
Отметим на числовой прямой точки, дающие при делении на 12 остаток 5, красным карандашом, а точки, дающие при делении на 18 остаток 13-синим. Каково будет наименьшее расстояние между красной и синей точкой?

Очевидно :
n₁  =12q₁ + 5 ( отмечены красным карандашом);  
n₂ =18q₂ + 13 (отмечены синим карандашом ) .
Расстояние между этими точками будет:
d=| n₁  - n₂ | = |12q₁ + 5  -( 18q₂ + 13) | = | 6(2q₁ -3q₂) - 8 | .
Значение выражения (2q₁ -3q₂) должна быть  не отрицательной (d  ≥0)
если :
2q₁ -3q₂ =0 ⇒ d =8 ;
---
2q₁ -3q₂ =1 ⇒ d =2 ;
---
2q₁ -3q₂ =2 ⇒ d =4 ;
2q₁ -3q₂ =3 ⇒ d =10  ;
и т.д.  расстояние  увеличивается.
Получается  d =dmin=2 , если уравнение 2q₁ -3q₂ =1  будет иметь целочисленное решение и оно имеет. 
Действительно:
2q₁ -3q₂ =1 ⇔2q₁ =3q₂+1 ⇔q₁ =q₂ +(q₂+1)/2 ,
замена (q₂+1)/2 =t  ∈ Z  ⇒ q₂ =2t -1  и q₁ =q₂ +(q₂+1)/2= 2t -1  +t =3t -1.
{q₁ =3t - 1 ; q₂ =2t -1 . 
Соответственно :
{ n₁  =12q₁ + 5  =36t -7  ; n₂ =18q₂ + 13 =36t -5  ; t ∈Z.
Бесконечно  множество  точек :
например:
t=-1⇒n₁ = - 43 ; n₂  = - 41 ;
t=0 ⇒n₁ =   -7 ;  n₂  = - 5 ;
t=1 ⇒n₁ =   29 ;  n₂  = 31 

ответ  : d min =2 .  

* * * между точками n₁  =36t -7  и   n₂ =36t -5  ; t ∈Z  * * *
4,6(70 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ