Скорость грузовой машины - 40км/ч.
Выразим скорость грузовой машины через х. Тогда скорость легковой машины - 1,5х (км/ч). Сколько времени ехала грузовая машина? часов. А легковая, соответственно,
часов. Поскольку известно, что выехала она на 2 часа позже, а приехала на
часа раньше, значит, в целом она пробыла в пути на
часов меньше.
- разница во времени.
Составим уравнение:
.
Избавимся от знаменателей, умножив обе части на общий множитель 3х.
Получим: 800 = 1200 - 10х
10х=400
х=40.
А это и есть скорость грузовика
y=6x⁵+15x⁴+10x³
1) Область определения: х∈(-∞,+∞) .
2) Множество значений: у∈(-∞,+∞) .
3) Эта кривая не имеет асимптот, так как
.
Нет точек разрыва.
4) Точка пересечения с осью ОУ (при х=0) одна - это (0,0).
5) Точка пересечения с осью ОХ тоже одна - (0,0), так как
6) Интервалы монотонности и точки экстремума функции:
Подсчитаем знаки производной y' на полученных интервалах:
При переходе через точки х=0 и х= -1 производная не меняет знак, значит точки х=0 и х= -1 не являются точками экстремума. А на промежутках, где производная всюду положительна, сама функция возрастает.
Интервалы возрастания функции: x∈(-∞,-1 ]∪[-1,0 ]∪[0,+∞) .
7) Интервалы выпуклости и вогнутости, точки перегиба функции:
Определим знаки второй производной y'' на интервалах:
На промежутках, где y''<0, функция y(x) выпукла, а там, где y''>0, функция вогнута. Точки перегиба - те точки, при переходе через которые у'' меняет знак,это х= -1 , х= -0,5 , х=0 .
8) Для более точного построения графика найдём координаты некоторых промежуточных точек: (-1,-1) , (-0,5 ; -0,5) .
График на рисунке.
14x-3x<14+9
17x-14x>5-21
11x<23
3x>-16
x<23/11
x<-16/3
- бесконечности до -5(1/3)