Подставим из 1 уравнение у=х-1 во второе {у=х-1 {х²-2(х-1)=26 Решим 2 уравнение, для этого раскроем скобки, умножая число перед скобками на каждое число, стоящее в скобках: х²-2х+2=26 Перенесем числа влево и приведем подобные слагаемые, чтобы в правой части остался ноль. х²-2х-24=0 Решим квадратное уравнение: D=b²-4ac, где a число перед x², a=1; b число перед x, b=-2; c свободное число, в нашем случае с=-24 D=4-4*1*(-24)= 4+96=100 x1= (-b+√D)/2a= (2+10)/2=6 x2=(-b-√D)/2a= (2-10)/2=-4 Найдем y1 и y2 подставив в первое уравнение получившиеся x1 и x2: y1=x1-1=6-1=5 y2=x2-1=-4-1=-5 ответ: (6;5) ; (-4;-5)
Понятно, что в больших коробках и в маленьких коробках количество книг одинаковое и равно половине от общего количества книг (примем за Х). Неодинаково количество больших и маленьких коробок. Пусть больших коробок было А штук, а меленьких В штук. Тогда 24*А - количество книг в больших коробках, 15*В - количество книг в маленьких коробках. И там, и там половина от общего количества книг (по условию). То есть, 24*А = 15*В = Х/2. Мы знаем, что больших коробок на 3 меньше, значит А - 3 = В. Подставим это значение В в наше первое уравнение: 24А = 15(А-3) 24А = 15А-45 А = 5 - столько было больших коробок, а книг в них, соответственно, 120 (24 * 5). Маленьких коробок было 8 (5 + 3), и книг в них тоже 120. Следовательно, всего книг 120 * 2 = 240. ответ: 240 книг.
{у=х-1
{х²-2(х-1)=26
Решим 2 уравнение, для этого раскроем скобки, умножая число перед скобками на каждое число, стоящее в скобках:
х²-2х+2=26
Перенесем числа влево и приведем подобные слагаемые, чтобы в правой части остался ноль.
х²-2х-24=0
Решим квадратное уравнение:
D=b²-4ac, где a число перед x², a=1; b число перед x, b=-2; c свободное число, в нашем случае с=-24
D=4-4*1*(-24)= 4+96=100
x1= (-b+√D)/2a= (2+10)/2=6
x2=(-b-√D)/2a= (2-10)/2=-4
Найдем y1 и y2 подставив в первое уравнение получившиеся x1 и x2:
y1=x1-1=6-1=5
y2=x2-1=-4-1=-5
ответ: (6;5) ; (-4;-5)