Исходное множество состоит из 4 элементов: 1, 2, 3, 4.
Пусть подмножества различимы. Поставим в соответствие разбиению строчку из 4 символов 0 или 1: на i-м месте 0, если число в первом множестве, 1, если во втором.
Понятно, что число таких строк совпадает с числом возможных разбиений. На каждом месте может находиться один из двух символов, все символы можно менять независимо, поэтому таких строк 2^4 = 16.
ответ. 16.
Если подмножества неразличимы, то каждое разбиение подсчитано дважды. Поэтому ответ в два раза меньше, 2^3 = 8.
Upd. В комментарии написали, что ответ якобы 10. Это не очень похоже на правду. Если не различать подмножества, то ответ не может быть больше 8. Если различать подмножества, то надо как-то отвергнуть 6 вариантов разбиения. Как это сделать, непонятно.
Можно рассматривать разбиения на непустые подмножества, т.е. отвергнуть варианты, в которых все элементы попадают в одно подмножество, а второе пусто. Если различать подмножества, получится 16 - 2 = 14 вариантов, если не различать - 7. В любом случае 10 не получается.
(a/b+b/a+2)∙1/(a+b)=(a^2+b^2+2ab)/ab*(a+b)=(a+b)^2/ab*(a+b)=a+b/ab
при а = -1, b = 0,2
a+b/ab=-1+0.2/-1*0.2=-0.8/-0.2=4