1) Находим точку пересечения c OY. Она имеет координаты (0; C). Нашли C.
2) По направлению ветвей определяем знак коэффициента А.
3) Находим вершину параболы. Пусть это точка с координатами (x0; y0). Если x0<0, то знак коэффициента B совпадает со знаком коэффициента А. Если x0>0, то знак коэффициента противоположен знаку А. Мы знаем, что -B/2A = x0 - уравнение для абсциссы вершины Ax0^2+Bx0+C = y0 - уравнение для ординаты вершины. x0, y0 и C нам известны. Значит, решив эту систему, найдём А и В.
Разберём на примере (см. рис.) 1. Точка пересечения с OY A(0; 4). Значит, C = 4.
2. Ветви вверх. Значит A>0.
3. Точка вершины O(-1; 3). Абсцисса точки О отрицательна, значит B>0
-B/2A = -1 A*(-1)^2+B*(-1)+4 = 3
B = 2A A-2A+4 = 3
B = 2 A = 1
Получаем уравнение x^2+2x+4 = 0. То есть А = 1, В = 2, С = 4
3х2+5х-а=0
Д=25+4*3*а> 0, чтобы было 2 корня , D>0
25+12a>0
12a>-25
a>-25/12
a>-2 1/12